Mathematics

quadratic equation, $a x^{2}+b x+c=0$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

trigonometry: $a^{2}+b^{2}=c^{2}$

$$
\begin{aligned}
\sin \theta & =a / c \\
\cos \theta & =b / c \\
\tan \theta & =a / b \\
\tan \theta & =\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

circular $\operatorname{arc}(\theta$ in rad) $: s=\theta r$
for a full circle, $\theta=2 \pi$ and $s=2 \pi r$

Fundamental Constants

$g=9.80 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
$c=$ speed of light $=2.99792458 \times 10^{8} \approx 3.00 \times 10^{8} \mathrm{~ms}^{-1}$
$m_{e}=$ mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{p}=$ mass of proton $=1.6726 \times 10^{-27} \mathrm{~kg}$
$m_{n}=$ mass of neutron $=1.6749 \times 10^{-27} \mathrm{~kg}$
$G=$ gravit. constant $=6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-2}$
$R_{E}=$ radius of Earth $=6.376 \times 10^{6} \mathrm{~m}$
$M_{E}=$ mass of Earth $=5.9736 \times 10^{24} \mathrm{~kg}$
$R_{L}=$ radius of Moon $=1.74 \times 10^{6} \mathrm{~m}$
$M_{L}=$ mass of Moon $=7.35 \times 10^{22} \mathrm{~kg}$
$T_{L}=$ orbital period $=2.36 \times 10^{6} \mathrm{~s}$
$R_{E-L}=$ Earth-Moon distance $=3.84 \times 10^{8} \mathrm{~m}$
$R_{S}=$ radius of Sun $=6.96 \times 10^{8} \mathrm{~m}$
$M_{S}=$ mass of Sun $=1.99 \times 10^{30} \mathrm{~kg}$
$R_{E-S}=$ Earth-Sun distance $=1.496 \times 10^{11} \mathrm{~m}$

Mechanics

motion in a straight line with $a=$ constant:

$$
\begin{aligned}
x & =x_{0}+\bar{v} t \longrightarrow \Delta x=\bar{v} t \\
\bar{v} & =\frac{v_{0}+v}{2} \\
v & =v_{0}+a t \longrightarrow \Delta v=a t \\
\Delta x & =v_{0} t+\frac{1}{2} a t^{2} \\
v^{2} & =v_{0}^{2}+2 a \Delta x
\end{aligned}
$$

Relative velocity: $\quad \overrightarrow{\mathbf{v}}_{A C}=\overrightarrow{\mathbf{v}}_{A B}+\overrightarrow{\mathbf{v}}_{B C}$
Newton's Laws:

$$
\begin{array}{ll}
\text { N1L: } & \overrightarrow{\mathbf{F}}_{\text {net }}=0 \Longrightarrow \overrightarrow{\mathbf{a}}=0 \\
\text { N2L: } & \overrightarrow{\mathbf{a}}=\frac{1}{m} \overrightarrow{\mathbf{F}}_{\text {net }} \longrightarrow \overrightarrow{\mathbf{F}}_{\text {net }}=m \overrightarrow{\mathbf{a}}
\end{array}
$$

$$
\text { N3L: } \quad \overrightarrow{\mathbf{F}}_{\mathrm{A} \text { on } \mathrm{B}}=-\overrightarrow{\mathbf{F}}_{\mathrm{B} \text { on } \mathrm{A}}
$$

$$
\text { Gravity: } \quad F=G \frac{m M}{r^{2}}
$$

friction:

$$
\begin{aligned}
f_{s} & \leq f_{s}^{(\max)}=\mu_{s} N \\
f_{k} & =\text { const }=\mu_{k} N, \quad \mu_{k}<\mu_{s}
\end{aligned}
$$

kinematics of circular motion with $\alpha=$ constant:

$$
\begin{aligned}
\theta & =\theta_{0}+\bar{\omega} t \longrightarrow \Delta \theta=\bar{\omega} t \\
\bar{\omega} & =\frac{\omega_{0}+\omega}{2} \\
\omega & =\omega_{0}+\alpha t \longrightarrow \Delta \omega=\alpha t \\
\Delta \theta & =\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

rolling without slipping: $\Delta s=r \Delta \theta, v_{T}=r \omega, a_{T}=r \alpha$ centripetal force and acceleration (for $\alpha=0$):

$$
F_{c}=m a_{c}=m \frac{v_{T}^{2}}{r}=m r \omega^{2}
$$

torque $\tau=$ force \times lever arm $=F r_{\perp}=r F \sin \theta$ moment of inertia: $I=m r^{2}$ about an axis through the geometrical centre

$$
\begin{gathered}
I_{\text {hoop }}=m r^{2} \quad I_{\text {disk }}=\frac{1}{2} m r^{2} \quad I_{\text {rod }}=\frac{1}{12} m L^{2} \\
I_{\text {sphere }}=\frac{2}{5} m r^{2} \quad I_{\text {sph.shell }}=\frac{2}{3} m r^{2}
\end{gathered}
$$

N2L for rotations: $\tau=I \alpha$
work $W=F d \cos \theta$, or $W=\tau \Delta \theta$
work done by a conservative force: $W_{\text {c.f. }}=-\Delta U$ gravitational potential energy

$$
F_{\text {gravity }}=-m g \quad \Longrightarrow \quad U_{g}=m g y
$$

kinetic energy of translation: $K=\frac{1}{2} m v^{2}$
kinetic energy of rotation: $K=\frac{1}{2} I \omega^{2}$
conservation of total mechanical energy

$$
\Delta U+\Delta K=W_{\text {non-c.f. }}
$$

power $=$ rate of doing work $=W / \Delta t=F v$ or $=\tau \omega$
$1 \mathrm{Watt}=1 \mathrm{~J} / \mathrm{s}$ and $1 \mathrm{~h} . \mathrm{p} .=746 \mathrm{~W}$
linear momentum $\overrightarrow{\mathbf{p}}=m \overrightarrow{\mathbf{v}}$
Impulse $=\overline{\overrightarrow{\mathbf{F}}} \Delta t=\Delta \overrightarrow{\mathbf{p}}$
conservation of momentum for a system as a whole

$$
\sum \overrightarrow{\mathbf{F}}_{\mathrm{ext}}=0 \Longrightarrow \overrightarrow{\mathbf{p}}_{\mathrm{total}}=\mathrm{const}
$$

angular momentum $\overrightarrow{\mathbf{L}}=I \vec{\omega}$, and $\overline{\vec{\tau}}=\frac{\Delta \overrightarrow{\mathbf{L}}}{\Delta t}$
conservation of angular momentum

$$
\vec{\tau}_{\text {net }}=0 \Longrightarrow \overrightarrow{\mathbf{L}}_{\text {total }}=\mathrm{const} \Longrightarrow I_{1} \omega_{1}=I_{2} \omega_{2}
$$

Waves and Sound

simple harmonic oscillator, $F=-k x, U=1 / 2 k x^{2}$

$$
\begin{gathered}
f=1 / T \quad \omega=2 \pi f=\sqrt{k / m} \\
\left\{\begin{array}{l}
x=A \cos \theta=A \cos \omega t \\
v=-A \omega \sin \omega t \\
a=-A \omega^{2} \cos \omega t
\end{array}\right.
\end{gathered}
$$

travelling wave $y=A \cos \left(\omega t \mp \frac{2 \pi}{\lambda} x\right)$ with $v=\lambda / T=\lambda f$ string of mass m, length ℓ, volume density ρ :

$$
v_{\text {string }}=\sqrt{\frac{F}{(m / \ell)}}=\sqrt{\frac{F}{(\rho A)}}
$$

intensity level: $\beta=10 \log \left(\frac{I}{I_{0}}\right) \mathrm{dB}, I_{0}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$
point source intensity: $I=\frac{P}{A}=\frac{P}{4 \pi r^{2}}$
Doppler (upper sign $=$ approach, lower $=$ recede $)$

$$
f=f_{s}\left(\frac{1 \pm \frac{v_{o}}{v}}{1 \mp \frac{v_{s}}{v}}\right) \quad \begin{aligned}
& v=\text { speed of sound } \\
& v_{s}=\text { speed of source } \\
& v_{o}=\text { speed of observer }
\end{aligned}
$$

