Mathematics

quadratic equation, $a x^{2}+b x+c=0$:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

trigonometry: $a^{2}+b^{2}=c^{2}$

$$
\begin{aligned}
\sin \theta & =a / c \\
\cos \theta & =b / c \\
\tan \theta & =a / b \\
\tan \theta & =\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

circular $\operatorname{arc}(\theta$ in rad) $: s=\theta r$
for a full circle, $\theta=2 \pi$ and $s=2 \pi r$

Fundamental Constants

$g=9.80 \mathrm{~m} \mathrm{~s}^{-2}$
$c=$ speed of light $=2.99792458 \times 10^{8} \approx 3.00 \times 10^{8} \mathrm{~ms}^{-1}$
$m_{e}=$ mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$
$m_{p}=$ mass of proton $=1.6726 \times 10^{-27} \mathrm{~kg}$
$m_{n}=$ mass of neutron $=1.6749 \times 10^{-27} \mathrm{~kg}$
$G=$ gravit. constant $=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
$R_{E}=$ radius of Earth $=6.376 \times 10^{6} \mathrm{~m}$
$M_{E}=$ mass of Earth $=5.9736 \times 10^{24} \mathrm{~kg}$
$R_{L}=$ radius of Moon $=1.74 \times 10^{6} \mathrm{~m}$
$M_{L}=$ mass of Moon $=7.35 \times 10^{22} \mathrm{~kg}$
$T_{L}=$ orbital period $=2.36 \times 10^{6} \mathrm{~s}$
$R_{E-L}=$ Earth-Moon distance $=3.84 \times 10^{8} \mathrm{~m}$
$R_{S}=$ radius of Sun $=6.96 \times 10^{8} \mathrm{~m}$
$M_{S}=$ mass of Sun $=1.99 \times 10^{30} \mathrm{~kg}$
$R_{E-S}=$ Earth-Sun distance $=1.496 \times 10^{11} \mathrm{~m}$

Mechanics

uniform linear acceleration $a=$ const:

$$
\begin{aligned}
v & =v_{0}+a t \\
\bar{v} & =1 / 2\left(v_{0}+v\right) \\
\Delta x=d & =\bar{v} t=1 / 2\left(v_{0}+v\right) t=v_{0} t+1 / 2 a t^{2} \\
v^{2} & =v_{0}^{2}+2 a d
\end{aligned}
$$

Newton's Laws:

$$
\begin{aligned}
\text { N2L: } & \vec{a}=\frac{1}{m} \vec{F}_{\text {total }} \\
\text { N3L: } & \vec{F}_{\mathrm{A} \text { on } \mathrm{B}}=-\vec{F}_{\mathrm{B} \text { on } \mathrm{A}} \\
\text { Gravity: } & F=G \frac{m m^{\prime}}{r^{2}}
\end{aligned}
$$

friction:

$$
\begin{aligned}
& f_{s} \leq f_{s}^{(\max)}=\mu_{s} F_{N} \\
& f_{k}=\text { const }=\mu_{k} F_{N}, \quad \mu_{k}<\mu_{s}
\end{aligned}
$$

kinematics of uniform angular acceleration: (angular displacement $\Delta \theta$, velocity ω, acceleration α)

$$
\begin{aligned}
\omega & =\omega_{0}+\alpha t \\
\bar{\omega} & =1 / 2\left(\omega+\omega_{0}\right) \\
\Delta \theta & =\bar{\omega} t=1 / 2\left(\omega+\omega_{0}\right) t=\omega_{0} t+1 / 2 \alpha t^{2} \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

rolling without slipping: $d=s=\Delta \theta r, v_{T}=\omega r, a_{T}=\alpha r$ centripetal force and acceleration (for $\alpha=0$):

$$
F_{c}=m a_{c}=m \frac{v_{T}^{2}}{r}=m \omega^{2} r
$$

torque $\tau=$ force \times lever arm $=F l$
moment of inertia:

$$
I=m r^{2} \quad \text { or } \quad I_{\mathrm{body}}=\sum_{i} m_{i} r_{i}^{2}
$$

about an axis through the geometrical centre:

$$
\begin{gathered}
I_{\text {hoop }}=m r^{2} \quad I_{\text {disk }}=\frac{1}{2} m r^{2} \quad I_{\text {rod }}=\frac{1}{12} m l^{2} \\
I_{\text {sphere }}=\frac{2}{5} m r^{2} \quad I_{\text {sph.shell }}=\frac{2}{3} m r^{2}
\end{gathered}
$$

N2L for rotations

$$
\tau=I \alpha \quad \text { or } \quad \sum \tau=I_{\mathrm{body}} \alpha
$$

work $\mathcal{W}_{t}=F d$, or $\mathcal{W}_{r}=\tau \Delta \theta$
work done by a conservative force:

$$
\mathcal{W}_{\text {c.f. }}\left(\vec{r} \rightarrow \vec{r}^{\prime}\right)=-\left[U\left(\vec{r}^{\prime}\right)-U(\vec{r})\right]=-\Delta U(\vec{r})
$$

gravitational potential energy

$$
F_{\text {gravity }}=-m g \quad \rightsquigarrow \quad U_{g}=m g y
$$

kinetic energy of translation: $K_{t}=\frac{1}{2} m v^{2}$
kinetic energy of rotation: $K_{r}=\frac{1}{2} I \omega^{2}$ conservation of total mechanical energy

$$
\Delta\left(U+K_{t}+K_{r}\right)=\mathcal{W}_{\text {non-c.f }}
$$

power $=$ rate of doing work $=\mathcal{W} / \Delta t=F v$ or $=\tau \omega$
$1 \mathrm{Watt}=1 \mathrm{~J} / 1 \mathrm{~s}$ and $1 \mathrm{~h} . \mathrm{p} .=746 \mathrm{~W}$

N2L in terms of linear momentum $\vec{p}=m \vec{v}$

$$
\text { Impulse }=\overline{\vec{F}} \Delta t=\Delta \vec{p} \quad \text { or } \quad \vec{F}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{p}}{\Delta t}
$$

conservation of momentum for a system as a whole:

$$
\sum \vec{F}_{\mathrm{ext}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{p}_{\mathrm{total}}}{\Delta t}=0 \rightsquigarrow \vec{p}_{\mathrm{total}}=\mathrm{const}
$$

elastic collision $(\Delta E=0)$: C.o.M. and C.o.K.E.

$$
\begin{aligned}
\vec{v}_{f 1} & =\vec{v}_{i 1} \frac{m_{1}-m_{2}}{m_{1}+m_{2}}+\vec{v}_{i 2} \frac{2 m_{2}}{m_{1}+m_{2}} \\
\vec{v}_{f 2} & =\vec{v}_{i 1} \frac{2 m_{1}}{m_{1}+m_{2}}+\vec{v}_{i 2} \frac{m_{2}-m_{1}}{m_{1}+m_{2}}
\end{aligned}
$$

inelastic collision: C.o.M. only

$$
\vec{v}_{f}=\vec{v}_{i 1} \frac{m_{1}}{m_{1}+m_{2}}+\vec{v}_{i 2} \frac{m_{2}}{m_{1}+m_{2}}
$$

angular momentum $\vec{L}=I \vec{\omega}$, and $\vec{\tau}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{L}}{\Delta t}$ conservation of angular momentum:

$$
\vec{\tau}_{\text {net }}=\sum_{i} \vec{\tau}_{i}=0 \rightsquigarrow \vec{L}_{\text {total }}=\mathrm{const} \rightsquigarrow I_{1} \omega_{1}=I_{2} \omega_{2}
$$

Waves and Sound

simple harmonic oscillator, $F=-k x, U=1 / 2 k x^{2}$

$$
\begin{gathered}
f=1 / T \quad \omega=2 \pi f=\sqrt{k / m} \\
\left\{\begin{array}{l}
x=A \cos \theta=A \cos \omega t \\
v=-A \omega \sin \omega t \\
a=-A \omega^{2} \cos \omega t
\end{array}\right.
\end{gathered}
$$

travelling wave $y=A \cos \left(\omega t \mp \frac{2 \pi}{\lambda} x\right)$ with $v=\lambda / T=\lambda f$ string of mass m, length l, volume density ρ :

$$
v_{\text {string }}=\sqrt{F /(m / l)}=\sqrt{F /(\rho A)}
$$

intensity level: $\beta=10 \log \frac{I}{I_{0}} \mathrm{~dB}, I_{0}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ point source intensity: $I=\frac{P}{A}=\frac{P}{4 \pi r^{2}}$
Doppler (upper sign $=$ approach, lower $=$ recede $)$

$$
f=f_{s}\left(\frac{1 \pm \frac{v_{o}}{v}}{1 \mp \frac{v_{s}}{v}}\right) \quad \begin{aligned}
& v=\text { speed of sound } \\
& v_{s}=\text { speed of source } \\
& v_{o}=\text { speed of observer }
\end{aligned}
$$

