
Conservation of momentum

The velocity ~v of a body of mass m is a vector quantity, symbolized an arrowed line segment.

• The magnitude of the vector represents the speed of the body, a scalar quantity.

• The orientation of the vector in space represents the direction of motion of the body.

If we consider a collision of two objects with masses m1 and m2, and with velocities ~v1b and ~v2b before the
collision, and velocities ~v1a and ~v2a after the collision, we note that it is generally difficult, if not impossible,
to predict these resulting velocities ~v1a and ~v2a.

To accomplish this, one would need to have a complete knowledge of the physical characteristics of the
objects (size, shape, etc.) and of the geometry of the interaction. However, it is practical to measure all
of the relevant quantities and then check to see whether their values are reasonable.

The linear momentum ~p of an object is a vector equal to the product of its mass m (a scalar) and its
velocity ~v (a vector). For two colliding objects, the law of conservation of linear momentum states that:

If the net external force acting on the colliding objects is zero, then the total momentum ~pb of
the colliding objects before the collision is equal to the total momentum ~pa after the collision.

A mathematical formulation of this law for a collision between two objects with masses m1 and m2 is a
vector equation and can be expressed as follows:

~p1b + ~p2b = ~p1a + ~p2a

m1~v1b +m2~v2b = m1~v1a +m2~v2a. (4.1)

Rearranging Equation 4.1 in terms of the changes in the momentum ∆~p1 and ∆~p2 of the two objects
shows that the net change will be zero and that these vectors will be oriented anti-parallel to one another:

~p1a − ~p1b + ~p2a − ~p2b = 0 → (~p1a − ~p1b) = −(~p2a − ~p2b) → ∆~p1 = −∆~p2

Similarly, the changes in the velocity for the two objects will result in two anti-parallel vectors:

m1(~v1a − ~v1b) = −m2(~v2a − ~v2b) → m1∆~v1 = −m2∆~v2 (4.2)

Since the two vectors ∆~v1, ∆~v2 are aligned, the vector Equation 4.2 can be reduced to a scalar equation
and expressed in terms of the magnitudes of the vector changes in velocities |~v2a − ~v2b| and |~v1a − ~v1b|.
That is, the magnitudes of the vectors on each side of Equation 4.2 are equal:

m1|∆~v1| = m2|∆~v2| (4.3)

Rearranging Equation 4.3 as a ratio of masses m1 and m2, we obtain:

m1

m2
=
|∆~v2|
|∆~v1|

=
|~v2a − ~v2b|
|~v1a − ~v1b|

. (4.4)

Thus, measuring the masses of the two pucks and the velocities of the pucks before and after the collision
to see if Equation 4.4 is satisified is an experimental test of the law of conservation of linear momentum.
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Conservation of energy

It is also of interest to know whether kinetic energy K = mv2/2 is conserved during a collision. The
“quality factor” Q = Ka/Kb is defined as the ratio of the total kinetic energy Ka after the collision to the
total kinetic energy Kb before.

The kinetic energy, and therefore Q, are scalar quantities.

• In an elastic collision, the kinetic energy of the system is conserved, and so Q = 1 and
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• in an inelastic collision some of the kinetic energy may be transformed into heat and sound energy
during the collision, or there could be frictional forces acting on the masses during the interaction,
and so Q < 1.

• In principle, in a superelastic collision, the total translational kinetic energy may even increase (Q >
1), for example if some rotational kinetic energy imparted onto the pucks before the collision transfers
into translational kinetic energy, or if additional energy is released by the collision itself (e.g., a
collision of two spring-loaded mousetraps).

Note that Q depends on the square of the velocity and hence will be very sensitive to variations in v.
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(4.6)

Some interesting collisions trivia

In a one-dimensional elastic collision between two objects of masses m1 and m2, where the first object has
a speed v1b = |~v1b| and the second object is stationary so that v2b = 0:

• if m1 = m2, then after the collision v1a = 0 and v2a = v1b;

• if m1 � m2, then after the collision v1a ≈ v1b and v2a ≈ 2v1b;

These results can be obtained from the conservation of energy and momentum Equations 4.5 and 4.1,
setting v2b = 0 then solving each for v1a and equating the two equations to get

v2a =

(
2m1

m1 +m2

)
v1b and from this v1a =

(
m1 −m2

m1 +m2

)
v1b. (4.7)

When m1 = m2, then v2a = v1b and when m1 � m2, then v2a ≈ 2v1b, as expected.

Consider a two-dimensional elastic collision between two identical round objects of equal mass m1 = m2

that are not spinning. The first object has a velocity v1b and the second object is stationary so that v2b = 0.
Then

• the angle between the velocity vectors ~v1a and ~v2a after the collisions is 90◦.

This result can be proved as follows. Because the masses of the two objects are equal, we can set m1 = m2

in Equation 4.1 (momentum conservation) to obtain

~v1b = ~v1a + ~v2a
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This means that the three vectors in the previous equation form a triangle. One can see that the triangle is
a right triangle by setting m1 = m2 in Equation 4.5 (conservation of kinetic energy for an elastic collision)
to obtain

v21b = v21a + v22a.

Because the side lengths of the triangle are related by the theorem of Pythagoras, it follows that the
triangle is a right-angled triangle. Thus, the angle between the outgoing velocity vectors, ~v1a and ~v2a, is
90◦. This completes the argument.

Billiards enthusiasts will know that this is true based on their experience. Certainly the situation with
billiard balls is more complicated, because a skilled practitioner can cause the cue ball to spin in various
ways, but if the spin of the cue ball is minimal then the result is approximately true on the billiard table.
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