
The simple harmonic oscillator

A simple harmonic oscillator (SHO) is a model system that is used to describe numerous real physical
systems. The reason for this is profound: the same fundamental equations that describe the motion of a
mass-on-a-spring also describe, to a very good approximation, the inter-atomic forces that hold all matter
together. At least in a first approximation, we can fairly accurately pretend that every solid object we
touch is held together by springs connecting pairs of atoms.

With no external forces applied to a solid material, the “inter-atomic springs” are at their equilibrium
lengths, neither stretched nor compressed. The application of an external stretching force to the material
will cause these springs to extend, thereby increasing the bulk length of the material. When the applied
external force is removed, the springs return to their equilibrium lengths, restoring the material to its
original dimensions. Such restoring forces may be overcome by a large enough applied external force that
will cause the object to deform permanently or to break. The maximum force applicable without permanent
distortion is called the elastic limit of the material.

Hooke’s law states that the stretch or compression x of a material is directly proportional to the applied
force F . The proportionality constant, called the stiffness constant k, has units of newtons per metre (N/m),
and is also frequently called the spring constant or the spring’s force constant. This proportionality between
force and deformation has been found to be an excellent approximation for any solid object, as long as the
elastic limit of the material is not exceeded.

For an object attached to a spring, Hooke’s law is:

Fs = −kx ,

where Fs is the force exerted by the spring on the object and x is the displacement of the object from its
equilibrium position. The negative sign expresses the fact that the force exerted by the spring on the object
is in the direction opposite to the object’s displacement.

For this reason, the force exerted by a spring on an attached object is often described as a restoring
force, because it tends to restore equilibrium. That is, when the object is not at its equilibrium position,
the force that the spring exerts on the object is directed towards the equilibrium position.

If the spring force and gravity are the only forces acting on the object, the system is called a simple
harmonic oscillator, and the object undergoes simple harmonic motion — sinusoidal oscillations about
the equilibrium point, with a constant amplitude, and a constant frequency that does not depend on the
amplitude.

Simple harmonic motion is equivalent to an object moving around the circumference of a circle at
constant speed, in the sense that the same formulas describe each kind of motion.

In the absence of friction, the oscillations will continue forever. Friction robs the oscillator of its
mechanical energy, transferring it to thermal energy, and so the oscillations decay, and eventually stop
altogether. This process is called damping, and so in the presence of friction, this kind of motion is called
damped harmonic oscillation.
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If the mass is displaced from its new equilibrium position and released, it will begin to oscillate according
to

y = A0 cos(ω0t+ φ), ω0 =

√
k

m
= 2πf0 =

2π

T0

where A0 and φ are the initial amplitude and phase angle of the oscillation, T0 is the period in seconds,
and ω0 is the angular speed in radians/second.

Recall that pendulum motion was also analyzed using this same equation. In essence, the pendulum
was assumed to be undergoing simple harmonic motion during the short time interval that was sampled.

If a damping force Fd is present, the oscillation decays exponentially at a rate determined by the
damping coefficient γ:

y = A0e
(−γt) cos(ωdt+ φ), ωd =

√
ω2
0 − γ2, γ =

R

2m

Note an interesting detail; the damped frequency of oscillations, ωd, is smaller than ω0 because of the
subtraction of γ2 under the square root. This reduction is not all that noticeable, even though the decrease
in the amplitude due to the e−γt term may be readily observed.

Note also that the hanging spring is stretched by its own weight and may exhibit twisting as well as
lateral oscillations when stretching, factors that are neglected in our analysis.

One other simplifying assumption: this experiment assumes an ideal massless spring connected to a
point mass m. Even with all these approximations, the damped harmonic oscillator lends itself very nicely
to an experimental investigation.

Note further that the pendulum motion would, if given enough time, have decreased in amplitude so
that for a long data sample of the pendulum motion over time, the damped harmonic oscillator equation
would have to be used to make a proper fit of the data set.
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