
Theory

Figure 3.2: Ballistic Pendulum

The ballistic pendulum is used to explore the trans-
fer and conservation of energy and momentum in a
collision of two objects. One of these objects is a
small projectile of mass m that is projected at a
certain speed v by a launcher. The second object
is a pendulum that is initially stationary. As the
projectile hits the pendulum, a re-distribution of
energy and momentum takes place.

In a certain class of collisions, the projectile is
captured by the pendulum. For such inelastic col-
lisions, we can consider the pendulum and projec-
tile to be one single object after the collision, and
this one combined object carries all of the kinetic
energy Kafter and momentum Pafter after the col-
lision. If the mass of the pendulum is M then the
total mass of the combined object after the colli-
sion is MT = M + m. If the pendulum is stationary when the projectile hits, the pendulum contributes
nothing to the total kinetic energy and momentum of the system before the collision. Thus the principle of
conservation of momentum in this case yields (where vT is the speed of the combined object immediately
after the collision):

Pbefore = Pafter

mv = MT vT (3.3)

mv = (M +m)vT

Solving Equation 3.3 for vT , we obtain

vT =
mv

MT
(3.4)

Using the expression for the speed of the combined object immediately after the collision from the previous
equation, we can show that the kinetic energy of the combined object immediately after the collision is
less than the kinetic energy of the projectile just before the collision:
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Because the mass m of the projectile is less than the mass MT of the combined object after the collision,
it follows that
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m

MT
< 1

and therefore

Kafter < Kbefore

As the pendulum begins to swing after the collision, the kinetic energy of the combined object is gradually
converted to gravitational potential energy as the pendulum rises. At the peak of its swing, the pendulum’s
mechanical energy is all in the form of gravitational potential energy, and its kinetic energy is zero. As
the pendulum begins to move downwards after it reaches the peak of its motion, its gravitational potential
energy is gradually converted to kinetic energy as the pendulum falls. At the lowest point of its motion,
the pendulums’s mechanical energy is all in the form of kinetic energy, and its graivational potential energy
can be considered to be zero. Thus, we can write

Etop = MT gh (3.5)

and

Ebottom =
1

2
MT v

2
T (3.6)

Assuming that mechanical energy is conserved during the initial swing of the pendulum, we can equate the
expressions in Equations 3.5 and 3.6. While doing this, we can combine Equations 3.4 and 3.6 to eliminate
vT to obtain an expression that relates the initial speed v of the projectile to the final elevation h of the
combined object, as follows.
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Equation 3.7 can be expressed in terms of the maximum angle of the pendulum’s motion, as follows. The
length Rcm describes the radius of the arc from the pivot point to the centre of mass of combined rod,
block, and block contents. With the vertical orientation of Rcm as the base of a right-angled triangle, h
can be expressed in terms of the maximum angle θ of the swing: Rcm cos θ = (Rcm − h). Solving for h,
we obtain

h = Rcm −Rcm cos θ = Rcm (1− cos θ) (3.8)

34



Inserting this expression for h into Equation 3.7, we obtain

v =
MT

m

√
2gRcm (1− cos θ) (3.9)

There is another energy conversion taking place, even before the collision. In the experiment, the
launcher transfers some of its elastic potential energy into the projectile’s initial kinetic energy. (Similarly,
the force exerted by the spring on the projectile provides the projectile’s initial momentum.) Applying the
principle of conservation of energy to the transfer of energy from the spring to the projectile yields (where
x is the maximum displacement of the spring from its equilibrium position and k is the stiffness constant
of the spring)

elastic potential energy of spring = initial kinetic energy of projectile
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(3.10)

Calculating v using Equation 3.7 and measuring the value of x allows us to use Equation 3.10 to determine
the stiffness constant of the spring.

Note that there is an additional complication: The spring has a “pre-load” displacement. That is, when
the spring is in its “relaxed” state, there is some compression in the spring. Think about how the previous
analysis has to be modified to account for this pre-load compression.
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