Tips for Fitting a Decaying Sinusoid

$y=A_{0} e^{(-\gamma t)} \cos \left(w_{d} t+\phi\right) \leftarrow$ Formula in lab manual
$y=A \cos (B x+C) e^{D x}+E \leftarrow$ Formula in Physicalab
When fitting a decaying sinusoid we need to account for the damping coefficent: D.

Estimating " D ": If $D=1 / x, A e^{-D x}$ becomes $A e^{-\frac{1}{x}(x)} \rightarrow A e^{-1}$ or $\frac{A}{e}$ $\frac{A}{e}=\frac{A}{2.718 . . .} \approx \frac{A}{3}$ So, when $D=1 / x$ the amplitude is approx. one third of its initial value.
In the case of this graph, the initial amplitude decreases by $2 / 3$ after 2 sec . Therefore $D=1 / 2$

Solving the other parameters:

1. In Physicalab your graph will look something like this:

You can see the amplitude slowly decreases over time. However the first few cycles look very similar to an undamped sinusoidal function.
2. Change the limits on the x -axis to view the first few cycles. With a constraint, the fitting routine will use only the specified range of data, in this case the data from 0 to 4 seconds.

3. Try fitting a cosine wave $y=A \cos (B x+C)+D$ to this data by estimating the amplitude A , initial phase angle C , the angular velocity B from the wave period $T=2 \pi / \mathrm{B}$ and the average distance of the wave from the x -axis D .

$\mathrm{A}=0.801814 \mathrm{E}-01 \pm 0.481647 \mathrm{E}-04, \mathrm{~B}=7.26506 \pm 0.275006 \mathrm{E}-03$
$\mathrm{C}=2.16490 \pm 0.638234 \mathrm{E}-03, \mathrm{D}=0.115810 \mathrm{E}-01 \pm 0.269403 \mathrm{E}-03$
$\mathrm{E}=0.592313 \pm 0.172357 \mathrm{E}-04, \mathrm{~F}=1.00000 \pm 0.00000$
Total χ^{2} per degrees of freedom $=0.232050 \mathrm{E}-07$

- fit to $y=A^{*} \cos \left(B^{*} x+C\right)+D$

4. Select auto scale and remove any constraints.

Select fit to $y=A \cos (B x+C) e^{D x}+E$. Note that now the average distance of the wave from the x -axis is given by E , not D .

Enter your estimates for A, B, C and E from the previous fit, then estimate the value of the damping coefficient D as described above until you get a good fit of your decaying sinusoid data.

Idealized

Reainy I shoulda considered external factors

