Assignment No. 3

Physics 2P20

Due October 25, 2023

1. A particle undergoing simple harmonic motion has a velocity \dot{x}_{1} when the displacement is x_{1} and a velocity \dot{x}_{2} when the displacement is x_{2}. Find the angular frequency and the amplitude of motion in terms of the given quantities.
2. Kleppner and Kolenkow, 2nd ed., Problem 3.19.
3. A damped harmonic oscillator with $m=10 \mathrm{~kg}, k=250 \mathrm{~N} / \mathrm{m}$, and $c=60 \mathrm{~kg} / \mathrm{s}$ is subject to a driving force given by $F_{0} \cos \omega t$, where $F_{0}=48 \mathrm{~N}$.
(a) What value of ω results in steady-state oscillations with maximum amplitude?
(b) What is the maximum amplitude?
(c) What is the phase shift?
4. The frequency f_{d} of a damped harmonic oscillator is 100 Hz , and the ratio of the amplitude of two successive maxima is one half.
(a) What is the undamped frequency f_{0} of this oscillator?
(b) What is the resonant frequency f_{r} ?
5. EFTS, Lorentz model of an insulator.

Derive the terms for dispersion and absorption parts of the dielectric response, by taking the real part of the time-dependent position, $\Re\{x(t)\}$, of the electronic charge e, under the influence of an external electric field $E_{x}=E_{0} e^{i \omega t}$, i.e. solve

$$
\ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=-\frac{e E_{0}}{m_{e}} e^{i \omega t}
$$

Reminder: the midterm on October 23 will contain problems similar to these.

