Assignment No. 4

Physics 2P20
Due November 6, 2023, 9:30 in class

1. Kleppner and Kolenkow, 2nd edition, Problem 11.13.
2. Kleppner and Kolenkow, 2nd edition, Problem 4.3.
3. Kleppner and Kolenkow, 2nd edition, Example 4.21 and Problem 4.18.
4. For the frictionless roller-coaster on a vertical loop in the Example solved in the notes ($K \mathcal{B} K$ Pr.5.1), if the force pressing it against the track is never - even at the top of the loop - less than its weight, the starting elevation must be $z=3 R$ where R is the radius of the loop. Assume this initial condition.
(a) Obtain an expression for $\dot{\theta}$ valid for all points on the loop.
(b) Separate the variables and integrate to calculate the total time T it takes the roller-coaster to loop-the-loop.
(c) Using Taylor series' expansion,

$$
(1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^{2}+\frac{n(n+1)(n+2)}{3!} x^{3}+\ldots
$$

calculate T to within a few percent, for $R=25 \mathrm{~m}$.
5. Kleppner and Kolenkow, 2nd edition, Problem 5.6.

Hint: The point where the block loses contact with the sphere corresponds to the point where the normal force on the block from the sphere goes to zero.

