Assignment No. 5

Physics 2P20
Due November 20, 2023

1. An artillery shell is fired at an angle of elevation of 60° with initial speed v_{0}. At the uppermost part of its trajectory, the shell bursts into two equal fragments, one of which moves directly upward, relative to the ground, with initial speed of $v_{0} / 2$. What is the direction and speed of the other fragment immmediately after the burst?
2. A proton of mass m_{p} with initial velocity \vec{v}_{0} collides with a helium atom, mass $4 m_{p}$, that is initially at rest. If the proton leaves the point of impact at an angle of 45° with the original line of motion, find the final velocities of each particle. Assume that the collision is perfectly elastic.
3. An inverted garbage can of weight W is suspended in air by a water fountain from a geyser. The water shoots up from the ground with a speed v_{0} at a constant rate $d m / d t$. Assume that the water "particles" undergo an elastic collision with the garbage can. Find the height at which the garbage can rides.
This is essentially Problem 4.23 from Kleppner and Kolenkow, 2nd edition.
4. Kleppner and Kolenkow, 2nd edition, Problem 6.16 (converting between C.o.M. and Lab frames).
5. Kleppner and Kolenkow, 2nd edition, Problem 5.12 (Lennard-Jones potential).
