
Experiment 6

Collisions and Conservation Laws

6.1 Elastic collisions

Conservation of momentum

Consider a collision of two objects with masses m1 and m2, and with velocities v1 and v2 before the
collision, and velocities v1

′ and v2
′ after the collision. To predict the final velocities, one would need to

have a complete knowledge of the physical characteristics of the objects (size, shape, etc.) and of the
geometry of the interaction. However, it is practical to measure all of the relevant quantities and then
check to see whether the values are reasonable.

Conservation of momentum implies that

p1 + p2 = p1
′ + p2

′ . (6.1)

Rearranging Equation 6.1 in terms of the changes in the momentum ∆p1 = m1∆v1 and ∆p2 = m2∆v2 of
the two objects shows that the net change will be zero and that these vectors will be oriented anti-parallel
to one another:

p1
′ − p1 + p2

′ − p2 = 0 → p1
′ − p1 = −(p2

′ − p2) → m1∆v1 = −m2∆v2 (6.2)

Vector Equation 6.2 can be reduced to a scalar equation for the magnitudes of the vector changes:

m1|∆v1| = m2|∆v2| , (6.3)

or, rearranging Equation 6.3 as a ratio of masses m1 and m2:

m1

m2
=
|∆v2|
|∆v1|

=
|v2
′ − v2|

|v1
′ − v1|

. (6.4)

Thus, measuring the masses of the two pucks and the velocities of the pucks before and after the collision
to see if Equation 6.4 is satisfied is an experimental test of the law of conservation of linear momentum.

Conservation of energy

It is also of interest to know whether kinetic energy K = 1
2mv

2 is conserved during a collision. The
“restitution factor” R = K ′/K is defined as the ratio of the total kinetic energy K ′ after the collision to
the total kinetic energy K before; for a perfectly elastic collision, R = 1, and
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In an inelastic collision some of the kinetic energy may be transformed into heat and sound energy during
the collision, or there could be frictional forces acting on the masses during the interaction, and so R < 1.
In principle, in a superelastic collision, the total translational kinetic energy may even increase (R > 1),
for example if some rotational kinetic energy imparted onto the pucks before the collision transfers into
translational kinetic energy, or if additional energy is released by the collision itself (e.g., a collision of two
spring-loaded mousetraps).

Note that R depends on the square of the velocity and hence will be very sensitive to variations in v,

R =
K ′

K
=
m1 v

′
1

2 +m2 v
′
2

2

m1 v1
2 +m2 v2

2
. (6.6)

6.2 Experimental procedure

Figure 6.1: Trails left by moving pucks

The equipment consists of an air table that discharges streams of air from a series of closely spaced
holes on its flat surface. Two plastic pucks float on this cushion of air with little friction. The pucks
are launched and made to collide. An overhead camera records a movie of the collision. Software called
Tracker is used to make a frame-by-frame analysis of the movie. For each frame, the software determines
the position of the two pucks and records their coordinates in a table. These dots map the trajectory of
the two pucks in time, as shown in Figure 6.1. From this data, vectors of the velocities before and after
the collision are determined for each puck.�
�	! To start, use a digital scale to record the masses of the two pucks.
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Record a video of the collision�
�	! In PhysTks, select Hardware −→ USB camera.�
�	! Click Start video stream ; a window should open to display the video from the camera situated above
the air table. Verify that the table is framed evenly within the displayed picture. You can adjust the
brightness of the image with the scrollbox above the video frame.�
�	! Place the pucks on the air table and turn on the air until the pucks begin to float freely, then, if
necessary, level the frame by adjusting the height of the two legs on the side until the pucks float in
place.�
�	! Place the launchers in adjacent corners of the frame. Load the pucks and press the trigger to release
them toward the centre of the air table, where they will collide. Do several practice runs.

While any collision is theoretically valid, for ease of analysis your collision should be fairly symmetric
as in Figure 6.1 and take about 2–3 seconds to complete. Small initial velocities will cause the pucks
to slow down due to friction and yield unsatisfactory results.�
�	! To record the collision, have one person press the Capture video button and another release the

pucks. The recording ends automatically after about 5 seconds.�
�	! Review your collision video by clicking on the Review video button. Repeat if necessary, making
sure that the white dots on the pucks remain fairly sharp throughout, as these are the objects that
the software will track.

Also, if the pucks are observed rotating during the collision, this may affect the results, i and it is
best to re-record another run.

Every student should record an individual video.

Analysis of the video with the Tracker software

The process is described in a slide show that can be found on the class website, https://www.physics.
brocku.ca/Courses/2P20/Tracker/.

To start, you need to calibrate the video frame so that Tracker coordinate values correspond to the
physical locations on the air table. This can be done using the 5-cm grid lines on the air table as follows:

• click Track , New , Calibration Tools , Calibration Points , then shift-click on intersecting grid
lines about 15 cm (3 divisions) below and 15 cm to the left of the grid centre and enter −0.15 for the
x and y coordinates of point 1;

• move 30 cm (6 divisions) up and 30 cm to the right of point 1, shift-click and enter 0.15 for the x
and y coordinates of point 2.

The xy-axes should now be centered between these two reference points. You can review or change the
coordinates of these points by clicking on them.

The next step is to trim the video clip to include only the portion of the movie that represents the
collision you are going to analyse:

• below the progress scrollbar in the viewer window, adjust the left up arrow to advance the video,
frame-by-frame, to the start of the collision sequence, when the pucks have left the launchers and
both white dots are visible;

• adjust the right up arrow to set the end of the collision sequence, before the pucks hit the edge of
the air table.

https://www.physics.brocku.ca/Courses/2P20/Tracker/
https://www.physics.brocku.ca/Courses/2P20/Tracker/
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• Use the cue controls to review the movie and adjust the start and end frames, if necessary.

The actual centre of each puck is elevated from the air table surface, causing its position to be distorted
in the video image as the puck moves around the field of view of the camera. To avoid this problem, the
two white dots on the flat surface of the puck are used to define a virtual centre of mass for each puck that
will be tracked accurately.

• Reset the movie to the start of the selection, then click Track , New , Point Mass . Note that mass
A is added to the task bar above the video.

• Press Ctrl-Shift; a cross-hair appears. Move it over one white dot on Puck 1 and right-click. A
square outline appears centered on the dot and the autotracker window opens. Visually check that

the Template and Match graphics agree, then press Search . A frame-by-frame progression of the
dot will be shown for the selected range to be analysed.

• Repeat the above steps for a mass B and the opposite dot on Puck 1.

• Define a centre of mass for Puck 1 by clicking Track , New , Centre of Mass . An entry window
opens for cm A. Check mass A and mass B then OK. The midpoint of masses A and B on Puck 1 is
now highlighted and tracked.

• Repeat these steps for Puck 2, adding mass C,D and their centre of mass cm B.

You can disable a trail by clicking on the label in the task bar. In the options by window that opens,
uncheck the visible option.

Analysis of puck trajectories:

A few points around the time of collision may appear erratic. Make a note of the times of the beginning
and end of the collision itself, as you will need to divide the data set for each puck into two clearly defined
subsets, one for before and one for after the collision.

Tracker software does have options to display and/or save velocities of the two pucks. The Table

view allows the display of a variety of parameters such as x, y, vx, vy, θ.

Use File , Export , then Data file to save trace data as a plain text file for each of cm A and cm B)

and to continue your analysis in eXtrema . Use eXtrema to perform all the required calculations; this will
prevent arithmetic errors.�
�	! In eXtrema, the function iclose(...) will prove useful; since the x-component of each velocity in

your collision of approximately equal masses changes sign, you could find the point in the data set
where vx is close to zero; since there are probably a few erratic points around the time of the collision,
it’s probably a good idea to skip a few points on either side. Here’s a sample eXtrema syntax that
could be used:

...

i0=iclose(v1x,0)

V1_before=sqrt(mean(v1x[1:i0-5])^2+mean(v1y[1:i0-5])^2)

V1_after=sqrt(mean(v1x[i0+5:#])^2+mean(v1y[i0+5:#])^2)

...

The end result of this first step of the analysis is to obtain and record the values listed in Table 6.1.
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Puck 1 Puck 2

value ± value ±

mass, m =

before collision

vx =

vy =

v =
√
v2
x + v2

y =

θ = arctan(vy/vx) =

after collision

v′x =

v′y =

v′ =
√
v′x

2 + v′y
2 =

θ′ = arctan(v′y/v
′
x) =

Table 6.1: Puck masses and velocity components

�
�	! Use the coordinate/velocity data for the centre-of-mass of each puck to calculate the velocity change
vectors

∆v1 = v1
′ − v1 and ∆v2 = v2

′ − v2 .

It is probably the easiest to perform vector subtraction in Cartesian coordinates:

(∆v1)x = v′1x − v1x and (∆v1)y = v′1y − v1y , (6.7)

and similarly for the second puck.

eXtrema syntax fragment could be something like this:

DeltaV1x=mean(v1x[i0+5:#])-mean(v1x[1:i0-5])

DeltaV1y=mean(v1y[i0+5:#])-mean(v1y[1:i0-5])

...�
�	! According to Equation 6.2, the change in momentum of one puck is equal and opposite to that of
the other puck. Compare the lengths and orientation (angle) of vectors (v2

′ − v2) and (v1
′ − v1).

Remember that the periodicity of tan() is π, not 2π, and this leads to some ambiguity in calculating
its inverse using arctan(). In eXtrema, the functions atan() and atan2() are slightly different, and
one needs to be careful in interpreting the reported results, as additional considerations may be
needed to determine the quadrant of the angle, assumed to be in radians, reported by the function
you use. See the help menu. A sketch is always helpful. The equivalent functions atand() and
atan2d() expect the angle to be in degrees.

? Is momentum conserved in the collision? Review the four sets of velocity data. Is there a systematic
decrease of velocity in time, i.e. is deriv(t,v)<0?
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�
�	! Use Equation 6.4 to calculate a value and error for the experimental mass ratio of the pucks, and
compare it to the ratio m1/m2 obtained directly from the scale measurements of m1 and m2. All
calculations should accompanied by proper error analysis; to refresh the error propagation rules,
please review Section 1.4.

? Do the results agree within experimental error?�
�	! Use Equation 6.6 and the directly measured m1 and m2 values to calculate R (and its error estimate).

? Can this collision be called elastic?

Figure 6.2: Representative Tracker collision data rendered and analysed in eXtrema


