
Experiment 1

Data Analysis

1.1 Introduction

Some degree of uncertainty exists in any measurement. This uncertainty is called the error. Here, an error
does not mean a mistake, and neither it is the discrepancy between the student-measured value and that
given in a textbook. Rather, it is a quantitative indication of the probability that a further measurement
under the same conditions would give a result that falls within a specified range of the reported value. The
determination of the error associated with a measurement is part of the general problem of data analysis.
In this introduction only a few of the important concepts will be covered.

The other, equally important part of this introductory lab, is to learn to make good use of the computer
tools available to you. Modern science is impossible without computer-assisted measurement tools, and
one needs to become proficient in their use. This lab is performed on the computer workstations in the
lab, and no actual data is collected, but the scripts you will develop during this lab will be the starting
point for all subsequent experiments. In fact, it should become a habit to prepare the skeleton scripts in
advance of the lab, so that the data acquisition and preliminary analysis can be performed quickly and
efficiently.

“Scripts” referred to in the previous paragraphs are, in essence, simple computer programs. We will
be executing (running) these scripts within the environment of eXtrema , a powerful data analysis and
plotting package developed at the TRIUMF accelerator in Vancouver, BC, but the principle of saving
sequences of commands in scripts and then running those scripts, applying them to a variety of data files,
applies equally well to Matlab/octave, gnuplot, python or any number of other environment. We chose
to use eXtrema because its syntax is particularly simple, and it is particularly well-suited to the analysis
of data in Physics.

It is helpful to develop good habits in organizing your data and files in a meaningful structured manner.
To begin, make sure you have a convenient working directory and open a terminal window in it. It is
assumed you are familiar with the basic operations of a command-line interface in Linux. The following
reminder may help to get you going:

mkdir -p ~/2P20/Lab1
cd ~/2P20/Lab1

Within that terminal window, you can then start our chosen data analysis program by simply typing
eXtrema at the prompt. All of the script files for this lab should be placed in this directory.

Introduction to eXtrema�
�	! Complete an introductory eXtrema tutorial, at http://www.physics.brocku.ca/Labs/eXtrema.
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Figure 1.1: When the scale ticks are 0.2 units apart, any measurement within δ = 0.1 units of each tick
will be recorded as having the value of the tick itself. The range of true values reported as, say 9.2, will
be 9.2 ± 0.1, meaning anywhere between 9.1 and and 9.3, so within a bin of size 2δ = 0.2 units which is
the precision of the scale.

Table 1.1: Sample experimental measurements of L and T for a pendulum.

Trial #1 Length (cm) Trial #2 Time (seconds)

1 88.90 1 1.88

2 88.88 2 1.86

3 88.92 3 1.88

4 88.91 4 1.90

5 88.89 5 1.88

6 88.90 6 1.92

7 88.88 7 1.88

8 88.91 8 1.90

9 88.91 9 1.90

10 88.93 10 1.90

11 88.89

12 88.91

1.2 Instrumental errors

An analog scale, such as that on a meter stick, consists of a series of equally spaced reference points, or
ticks. The spacing between these ticks establishes the precision of the scale. When a single measurement
is performed using such an analogue “device”, the best one can do is to report the value of the tick
nearest to the measurement. In essence, any measurement within one-half of a step between ticks will be
reported as having the value of the tick. This is illustrated in Fig. 1.1. This principle is extended to digital
measurements, where the actual readout can be recorded unambiguously, with the understanding that the
implied precision is still ± the smallest digital step of the instrument, typically ±0.5 in the least significant
digit of the display.

Determination of a gravitational acceleration g

In a typical experiment, the value of the gravitational acceleration g is measured by determining the period
T of a pendulum of length L. A sample data set is reported in Table 1.1. From the data, g can be calculated
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from L and T according to:

g =
4π2L

T 2
.

stat

? What instrumental errors would you infer for the measurements of the length and the time?�
�	! While a long careful look at the data table might give you some insight, it is helpful to take a quick
visual survey at the data. Use your preferred text editor (gedit is suggested) to create the following
script, or macro file. The manual will refer to it as ex2.pcm, but feel free to use any other meaningful
name. Use the file extension .pcm to save you some typing in the future, as this is the default.1

window 3
L={88.9;88.88;88.92;88.91;88.89;88.9;88.88;88.91;88.91;88.93;88.89;88.91}
graph L

window 4
T={1.88;1.86;1.88;1.9;1.88;1.92;1.88;1.9;1.9;1.9}
graph T

Once the file is saved, it can be called and executed in eXtrema , like this:

@ex2

File extension is not necessary, if .pcm (or .stk) was used as the extension. From now on, every
time you make a change in your ex2.pcm file, re-run the macro from the eXtrema command line, just
like above (up-arrow on keyboard will help). Note how the graph command did not have two vectors
(x, y) specified but only one. In such cases, the index of the vector is the assumed x-coordinate.�
�	! Even this very basic first draft is already helpful in visualizing uncertainty of the measurement. We
can quickly improve on it by modifying the macro in the following way:

– add restart commands, so that every time we run the script, we start from a clean slate;

– improve the quality of the graphs by using discrete symbols, unconnected by a line (by conven-
tion, lines are reserved for theoretical curves);

– add axes’ labels;

– calculate some basic statistics on the data, and show it on the graphs;

– add comments to help understand what and how the macro is doing, and to personalize it.

Below is the result of the outlined modifications. In the future, in your own macros, try to always
incorporate similar improvements early on.

! ex2.pcm
! eXtrema macro used in performing Exercise 2 from Lab 1 of PHYS 2P20
! By: Student B. Diligent, 2022.09
clear
defaults
destroy\all

set xlabel `Trial No.'

window 3

1 .pcm stands for physica command macros; physica was the eXtrema predecessor. .stk extension can also be used.
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L={88.9;88.88;88.92;88.91;88.89;88.9;88.88;88.91;88.91;88.93;88.89;88.91}
set ylabel `Length, cm'
set plotsymbol -15
set %plotsymbolsize 2
set plotsymbolcolor red
scales 0 0 0 88.7 89.1 4
graph L

stat L L_mean\mean L_std\sdev
set plotsymbol 0
set curvelinetype 1
set curvecolor red
graph\overlay {1;len(L)},{L_mean;L_mean}
set curvelinetype 9
graph\overlay {1;len(L)},{L_mean+L_std;L_mean+L_std}
graph\overlay {1;len(L)},{L_mean-L_std;L_mean-L_std}

window 4
T={1.88;1.86;1.88;1.9;1.88;1.92;1.88;1.9;1.9;1.9}
set ylabel `Time, s'
set plotsymbol -17
set %plotsymbolsize 1.5
set plotsymbolcolor blue
graph T

stat T T_mean\mean T_std\sdev
set plotsymbol 0
set curvelinetype 1
set curvecolor blue
graph\overlay {1;len(T)},{T_mean;T_mean}
set curvelinetype 9
graph\overlay {1;len(L)},{T_mean+T_std;T_mean+T_std}
graph\overlay {1;len(L)},{T_mean-T_std;T_mean-T_std}

A few explanations:

• Note how we keep changing the setting of plotsymbol. A negative value means “do not draw lines
between points”, zero means no points drawn, only the line. We normally do not use it, but a positive
value would draw both the point symbols and the line between them.

• We employed a slight increase in plotsymbolsize, to 1.5% or 2% of the screen width, instead of the
default 1%, but in general the default values for most settings in eXtrema work really well.

• To draw the horizontal lines we specified the two vectors on-the-fly as {x1;x2},{y1;y2}. This
corresponds to a pair of endpoints (x1, y1) and (x2, y2) between which a horizontal line is drawn
(note how y1 = y2 in our script).

Of course, the solid lines on the graphs represent the mean values, and the dashed ones are one standard
deviation away.

1.3 Random errors

In those cases in which only a single measurement is possible, the error reported is necessarily the instru-
mental error described in Section 1.2. If the situation permits, however, it is good practice to repeat a
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measurement several times. If the precision of the instrument is low, it may be found that all measurements
are found to be the same within the large instrumental error.

On the other hand, if the instrumental error is reduced by going to a more precise measuring device, it is
frequently found that the values so determined differ from one another by more than the instrumental error
and these differences generally become more noticeable as the accuracy of the instrument increases. As an
example, a digital scale readout may fluctuate by more than a single step in the least significant digit of the
display. The differences may arise from a number of causes, some of which may be impossible to control
(vibrations, temperature fluctuations in the environment, etc.), and some that are extremely sensitive to
small variations in the experiment line of sight of the experimenter, etc.). The measured quantity may also
have an intrinsic variability, such as the number of radioactive atoms that decay or the number of electrons
emitted per unit time from a filament at some temperature. In all of these cases the resultant uncertainty in
the reported value of the quantity measured can best be represented in statistical terms, as a distribution
function, i.e. the probability of a measurement yielding a certain value q. Note that the uncertainty
being described here arises from fluctuations in measurements and not as deviations from a theoretical
description of the results. As you may have encountered before, for randomly fluctuating variables, and in
the limit of a large number of measurements, the expected probability function approximates the so-called
normal (or Gaussian) distribution about the mean

P (q) =
1

σ
√

2π
e−(q−〈q〉)/2σ2

, (1.1)

where 〈q〉 is the average (mean) value of all measurements of q, and σ is the standard deviation which
reports the extent of the variations about the mean. The Gaussian distribution is not the only way to
describe a distribution of results of imperfect measurements, but it is reasonable, has a simple analytic
form, and “is accepted by convention and experimentation to be the most likely distribution for most
experiments. In addition, it has the satisfying characteristic that the most probable estimate of the mean
[value] from a random sample of observations of q is the average of those observations”2 〈q〉. There are
some subtleties to this result, which we will discuss in the rest of this Section.

Assume we wish to determine the value of some quantity q and we set out to do so by making a set of
n measurements, all made under identical conditions so far as they may be controlled, and all having the
same associated instrumental error. We call such a set a “sample.” It may be shown (and is intuitively
“obvious”) that the single parameter that best represents the sample is the arithmetic mean, defined by

〈q〉 =
1

n

n∑
j=1

qj . (1.2)

Stating 〈q〉 alone, however, is not sufficient to fully characterize the sample of n measurements. To more
fully describe the likelihood that a measurement may yield a certain value is to consider the full distribution
function of the measured quantity. To determine that, one can construct a frequency histogram, such as
the one shown in Figure 1.2, by plotting along the ordinate axis the number of times ni the measured
quantity q falls in the range qi ± δ, against the associated value of qi. The tics of the horizontal axis mark
off segments or “bins” of width 2δ, and i is the index of the bin center points qi, not the index j of the
individual measurements qj . Of course, to convert a frequency histogram into a probability distribution,
one divides by the total number of counts in all bins, P (qi) = ni/n, since

∑n
i=1 ni/n = 1.

A full distribution function is very descriptive, but a simplification can be realized by introducing a
simple quantitative measure of “spread” of values about 〈q〉. Since the individual values of q are distributed
about 〈q〉, we can define the deviation of, say, the jth value qj from the mean as

∆qj = (qj − 〈q〉). (1.3)

2P.R Bevington and D.K. Robinson. Data reduction and error analysis for the physical sciences. 2nd ed., McGraw Hill,
1992.
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Figure 1.2: Histograms are generated by dividing the range of measurement into “bins” and counting
how many individual measurements fall within the range of each bin. In the limit of a large number of
measurements of a randomly-varying quantity the histogram shape will approximate a normal distribution.

We might be tempted to use the average of the deviations, i.e.,

〈∆q〉 =
1

n

n∑
j=1

∆qj ,

as a measure of the spread of q values in our sample. However, this is not a fruitful approach (we will test
and confirm that in Section 1.3). Instead, we calculate the mean squared deviation, called the variance,
and use it as a measure of the spread; the square root of the variance is the standard deviation σ:

σ2 =
〈
(∆q)2

〉
= lim

n→∞

 1

n

n∑
j−1

(qj − 〈q〉)2

 . (1.4)

A true measure of σ can only be obtained in the limit of an infinite number of measurements; for a finite n,
careful analysis shows that a more appropriate measure is the standard deviation of the sample S, defined
through

S2 =
1

n− 1

n∑
j=1

(qj − 〈q〉)2 (1.5)

which is what we will use from now on. This is also what eXtrema reports as the “standard deviation” in
all of its statistical functions.

S is a measure of the width of the histogram; a large S value corresponds to a wide spread of values
around the average value. If one further measurement of q was done, there is a 68% probability that it will
fall in the range 〈q〉 ± S, a 95% chance that it will fall in the range 〈q〉 ± 2S. S is therefore an indication
of the error of a particular (single) measurement. The term error here does not refer here to a deviation
from some theoretical or “known” value. Since we do not know what the true value is, this is at best an
estimate of the error inherent in our measurement.

In those experimentally rare situations when the “true mean” of the distribution is known, we could take
several samples, calculate the mean of each sample and see how these means are distributed. The standard
deviation of this “distribution of means” is called the standard deviation of the mean, and it determines
the probability that our sample mean 〈q〉 lies within a certain range of the true mean. Statistical theory
shows that we can calculate it as σm = S/

√
n− 1. As we increase the number of samples, the mean will
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get closer to the true mean value, S will approach the true width of the underlying true distribution,
and σm → 0. Note this difference: S (calculated over n measurements) predicts the precision of a single
additional measurement, whereas σm predicts the precision of the average of many sets of measurements.
As n increases, S may not change very much, while σm will decrease.

In practice, for less than an infinite number of measurements, our best efforts can only yield estimates
of the underlying “true” distributions, and we take our sample variance S2 as the best estimate of the
variance σ2, in order to estimate the uncertainty σq of our measurement 〈q〉. The result of a set of n
repeated measurements quoted as

q = 〈q〉 ± Sq
represents our best estimate of the true uncertainty σq in the measurement of q. The two quantities, Sq
and σq, are different, but in practice Sq is the best measurement-based estimate of σq.

Basics of statistical analysis in eXtrema�
�	! Show (analytically) that the average deviation 〈∆qj〉 is always zero. Confirm (numerically) for our
L and T .�
�	! In Section 1.2 we used eXtrema’s statistics command to calculate averages and standard deviations.
This time, calculate the standard deviation of the sample for L and T , but from first principles, as
required by Equation 1.5, and verify that what eXtrema reported are the same numbers that are
obtained “by hand”. No need to break out a handheld calculator, use eXtrema itself to do these
step-by-step calculations: eXtrema is an excellent general-purpose calculator.

You may want to cut and paste the commands one-by-one into the command prompt, to see the
effect of each one. Afterwards, you can execute the entire macro at once.

! ex3.pcm
! eXtrema macro used in performing Exercise 3 from Lab 1 of PHYS 2P20
! It assumes @ex2 has been called previously, so that L and T are known vectors.
! If not, uncomment the first line of code here
! By: Student B. Diligent, 2022.09

!@ex2

=` ***** Calculation of basic statistical parameters for L'

N=len(L)
=sum(L)
L_m=sum(L)/N

=sum(L-L_m) ! pause and think here...
=sum((L-L_m)^2)
L_s2=sum((L-L_m)^2)/(N-1)
L_s=sqrt(L_s2)

=`Previously calculated mean(L) = '//rchar(L_mean)//` +/- '//rchar(L_std)
=`Manually calculated mean(L) = '//rchar(L_m)//` +/- '//rchar(L_s)

=` '
=` ***** Calculation of basic statistical parameters for T'

N=len(T)
=sum(T)
T_m=sum(T)/N
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=sum(T-T_m) ! pause and think here...
=sum((T-T_m)^2)
T_s2=sum((T-T_m)^2)/(N-1)
T_s=sqrt(T_s2)

=`Previously calculated mean(T) = '//rchar(T_mean)//` +/- '//rchar(T_std)
=`Manually calculated mean(T) = '//rchar(T_m)//` +/- '//rchar(T_s)

Constructing a distribution function

The mean and the standard deviation are the simplest forms of statistical analysis of the data. A more
complete picture is provided by the full probability distribution for the scatter of the data. For this, we
need to construct the histograms of our distributions. With only a relatively few points in our datasets,
our histograms can only have a small number of bins.�
�	! Construct histograms for L and T .

The following eXtrema macro is offered without comment, but it does perform the required operations.
Study it, use the Help facility as needed, and add comments in appropriate places, to ensure you fully
understand all of the commands used here. For example, the size of plotsymbol for histograms means
something different, use the Help facility to figure out what the commands do, and enter appropriate
comments in the right places in the macro file. You are expected to include this modified, fully
commented macro file, in your first lab report.

! ex4.pcm
! eXtrema macro used in Section 1.3.2, Lab 1 of PHYS 2P20
! By: Student B. Diligent, 2022.09
clear
defaults
destroy\all

L={88.9;88.88;88.92;88.91;88.89;88.9;88.88;88.91;88.91;88.93;88.89;88.91}
N_L=len(L)

window 5
set
xlabel `Trial No.'
ylabel `Length, cm'
%xlaxis 15
plotsymbol -15
plotsymbolcolor red
curvelinetype 1
curvecolour red

scales 0 0 0 88.84 88.98 7
graph L
stat L L_mean\mean L_std\sdev
set plotsymbol 0
graph\overlay {1;len(L)},{L_mean;L_mean}
set curvelinetype 9
graph\overlay {1;len(L)},{L_mean+L_std;L_mean+L_std}
graph\overlay {1;len(L)},{L_mean-L_std;L_mean-L_std}

get ymin L_1 ! match the range of the histogram to what's displayed
get ymax L_2
get ynlincs steps
L_step=(L_2-L_1)/steps
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bins=[L_1-3*L_step:L_2+3*L_step:L_step]
bin L,bins,counts

window 6
scales L_1 L_2 0 0 max(counts)+2 0
set
xlabel `Length, cm'
ylabel `Count'
%xlaxis 15
%ylaxis 15
curvelinetype 1
curvecolour red

graph\histogram bins,counts
set curvelinetype 9
set curvecolour blue
generate ll bins[1],,bins[#] 200
graph\overlay ll,normal(ll,L_mean,L_std)*(max(bins)-min(bins))/len(bins)*N_L

T={1.88;1.86;1.88;1.9;1.88;1.92;1.88;1.9;1.9;1.9}
N_T=len(T)

window 7
set
xlabel `Trial No.'
ylabel `Time, s'
%xlaxis 15
plotsymbol -17
%plotsymbolsize 1.5
plotsymbolcolor red
curvelinetype 1
curvecolor red

scales 0 0 0 1.82 1.96 7
graph T

stat T T_mean\mean T_std\sdev
set plotsymbol 0
graph\overlay {1;len(T)},{T_mean;T_mean}
set curvelinetype 9
graph\overlay {1;len(T)},{T_mean+T_std;T_mean+T_std}
graph\overlay {1;len(T)},{T_mean-T_std;T_mean-T_std}

get ymin T_1 ! match the range of the histogram to what is displayed
get ymax T_2
get nlyinc steps
T_step=(T_2-T_1)/steps

window 8
bins=[T_1-3*T_step:T_2+3*T_step:T_step]
bin T bins,counts
scales T_1 T_2 0 0 max(counts)+2 0
set
ylabel `Count'
xlabel `Time, s'
%xlaxis 15
%ylaxis 15
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plotsymbol 0
curvelinetype 9
curvecolor red

graph\histogram bins,counts
generate tt bins[1],,bins[#] 200
set curvecolor blue
graph\overlay tt,normal(tt,T_mean,T_std)*(max(bins)-min(bins))/len(bins)*N_T

window 0
set
color black
textalign 1
textinteractive 0
%xtextlocation 12
%ytextlocation 87
%textheight 3.5

text `<b1>a)'
set %ytextlocation 37
text `<b1>b)'
set %xtextlocation 62
set %ytextlocation 87
text `<b1>c)'
set %ytextlocation 37
text `<b1>d)'

1.4 Propagation of errors

Very frequently a parameter of interest is not measured directly, but is deduced from one or more parameters
that are measured, through some functional relationship. For example, the gravitational constant g is
approximately given in terms of length L of a pendulum and the period T of its swing by

g =
4π2L

T 2
. (1.6)

If measurements of both T and L have errors associated with them, we need to know how these errors
combine to give rise to an uncertainty in g.

In the following we shall consider a general case, in which the quantity z is a function of other directly
measurable parameters x, y, ..., expressed as

z = z(x, y, ...). (1.7)

The most probable value of z is given by

〈z〉 = z(〈x〉, 〈y〉, ...) , (1.8)

and the uncertainty in 〈z〉 can be obtained by examining the scatter of values resulting from the calculations
using the individual measurements xi, yi, ..., namely

zi = z(xi, yi, ...) . (1.9)

The variance σ2
z (and therefore the standard deviation σz =

√
σ2
z) are calculated using

σ2
z = lim

n→∞

[
1

n

∑
(zi − 〈z〉)2

]
. (1.10)
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Using a Taylor series’ expansion, Equation 1.10 can be written as

σ2
z ≈ lim

n→∞
1

n

∑[
(xi − 〈x〉)

(
∂z

∂x

)
+ (yi − 〈y〉)

(
∂z

∂y

)
+ ...

]2

(1.11)

≈ lim
n→∞

1

n

∑[
(xi − 〈x〉)2

(
∂z

∂x

)2

+ (yi − 〈y〉)2
(
∂z

∂y

)2

+ 2(xi − 〈x〉)(yi − 〈y〉)
(
∂z

∂x

)(
∂z

∂y

)
+ ...

]

where the partial derivatives are evaluated with all other variables held constant at their mean values,
i.e. (∂z/∂x)〈y〉,... is implied. The first two terms recognizably contain σ2

x and σ2
y ; the third term arises

from products of deviations in x, y, ... which are expected to be uncorrelated for independently measured
quantities, and thus can be expected to average out to zero. This third term involves covariance of x and
y, defined as

σ2
xy ≡ lim

n→∞

[
1

n

∑
(xi − 〈x〉)(yi − 〈y〉)

]
Similar arguments apply to all other pairs of variables, and thus Equation 1.11 gets simplified:

σ2
z ≈ σ2

x

(
∂z

∂x

)2

+ σ2
y

(
∂z

∂y

)2

+ ...+ σ2
xy

(
∂z

∂x

)(
∂z

∂y

)
+ ...

≈ σ2
x

(
∂z

∂x

)2

+ σ2
y

(
∂z

∂y

)2

+ ... (1.12)

with similar terms for all other variables. Equation 1.12 is called error propagation equation. It is worth
repeating here that the latter, abbreviated form of Equation 1.12 is only valid in the case of completely
uncorrelated fluctuations in the contributing variables. If an erroneous measurement xi is always accompa-
nied by a compensating erroneous measurement yi, the covariance term may yield a significant erroneous
increase (or decrease, since a positive contribution is not assured) in the calculated value of σz.

A weighted sum

If z = ax± by, where a and b are constants, the partial derivatives are simply (∂z/∂x) = a and (∂z/∂y) =
±b. Equation 1.12 immediately yields

σ2
z = a2σ2

x + b2σ2
y ± abσ2

xy ≈ a2σ2
x + b2σ2

y .

One can say that errors are additive here.

Products and ratios

If z = ±axy (a is again a constant), then (∂z/∂x) = ±ay and (∂z/∂y) = ±ax and the expression for σz
becomes

σ2
z

z2
=
σ2
x

x2
+
σ2
y

y2
+ 2

σ2
xy

xy
,

and similarly for z = ±a(x/y),

σ2
z

z2
=
σ2
x

x2
+
σ2
y

y2
− 2

σ2
xy

xy
.

If covariance σ2
xy is small, i.e. fluctuations in x and y are uncorrelated, both expressions reduce to

σ2
z

z2
≈ σ2

x

x2
+
σ2
y

y2
.

Here, the relative errors are additive.
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Powers

If z = ax±b, a and b constants, then (
∂z

∂x

)
= ±abx±b−1 = ±b z

x

and the relative errors are related by
σz
z

= ±bσx
x
.

The above rules can be combined, for example:

z(x, y, r, ...) =
xp yq...

rt...
−→ σ2

z

z2
≈ p2σ

2
x

x2
+ q2σ

2
y

y2
+ t2

σ2
r

r2
+ ... (1.13)

Computational exercises�
�	! Calculate the average value of g using Equation 1.6. One of the following two methods requires that
there is a Tj value for every Lj value, so first trim both vectors to the shorter of the two vector
lengths.

! Define a number of useful physical constants, we need Pi

define\constants

vector L T min(len(L),len(T))

! First method, use mean L and T values

g1=4*Pi^2*mean(L)*1e-2/mean(T)^2

! Second method, calculate N values of g, and mean of the results

g2=mean(4*Pi^2*L*1e-2/T^2)

=`Compare: '//rchar(g1)//` vs. '//rchar(g2)�
�	! Calculate (on paper) (∂g/∂L)T and (∂g/∂T )L from Equation 1.6. Evaluate the numerical values of
these partial derivatives using mean values 〈L〉 and 〈T〉.�
�	! Using eXtrema’s commands, estimate σL and σT , and combine with the values for the above partial
derivatives to calculate σg directly, as in Equation 1.12.�
�	! Yet another approach is to combine relative errors, as in Equation 1.13.

! First method, combine relative errors

dg1=g1*sqrt((stdev(L)/mean(L))^2+(2*stdev(T)/mean(T))^2)

! Second method, calculate N values of g, and stdev of the results

dg2=stdev(4*Pi^2*L*1e-2/T^2)

=`Compare: '//rchar(g1)//`+/-'//rchar(dg1)//` vs. '//rchar(g2)//`+/-'//rchar(dg2)

Are all of your results in agreement?


