Experiment 4

Resonance: Forced, Damped, Harmonic
Oscillations

In this experiment, a driving periodic force keeps adding energy to the system, while damping
keeps taking the energy out of the system. After a while, initially irregular motion settles into a
steady-state, and it is the properties of this steady-state that are of interest here. Something very

interesting happens when the frequency of the driving force comes close to the natural frequency of
the oscillations of the system.

Figure 4.1: Overall arrangement for the resonance experiment on an air track

Experimental procedure

This is a continuation of the previous two experiments, so the setup is again very similar except a digitally
controlled actuator is replacing a fixed point of attachment for one of the springs (see Fig. |4.1). The
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actuator arm at one end provides a continuous back-and-forth movement of the end of the spring, with
about 1 cm amplitude at variable frequency.

@ Review the procedure from Experiment [2| to ensure safe operation of the air track.
@ Weight the glider with the digital scale.

@ With the actuator turned off, start the glider oscillating to get an approximate value for the natural
frequency wyp of the system; use it to determine the range of frequencies that you will explore.

@ Set the actuator in motion. The record of x(¢) will initially be an irregular motion (the transient),
settling into a steady-state motion of the form x = A cos(wt+ ). As before, determine the frequency
w for this steady-state motion; amplitude and phase angle are given by
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@ Repeat as necessary to measure A for a number of w values, enough to generate a well-resolved graph
of A(w), as shown in Figure Fit to Equation to determine Fp, wy/m, and 7.

Hint: adjusting the driving frequency by a small amount will cause the resulting transient to settle
more quickly to a steady-state amplitude.

@ Show theoretically that:
1. AO = A(w — 0) = Fo/k‘eg.

2. A is a maximum for w = w,, with

Wz = w(z) - 2727 (43)
and .
Ay = Alw = wy) = Do/m @0 (4.4)
2w 2~

Determine Ay, A, and w, from the resonance curve and determine Fy and « from them.

As you vary the actuator frequency w, note qualitatively the relative phase Ay between the motion
of the actuator arm and the air car. There is a significant change when w increases from w < w, to
w > w,. Comment on that change in your lab report.

@ The behaviour of a damped oscillator is determined by wy and ~y, which are often combined in a
so-called “quality factor” Q = ‘5’—2

Calculate @ for this oscillator. @) determines the “shape” of the resonance curve. If the two frequencies
for which the amplitude of the response goes down to 1/v/2 of its maximum value (the “half-power
point”),
1
A=—A
V2

are wy and w_, then the half-width of the resonance curve, defined as Aw = w; —w_, is approximately
given by Aw = 2. Compare the predicted half-width of your resonance curve with the experimental
value.

The name “quality factor” derives from the fact that the value @ roughly corresponds to the number
of full oscillations that it takes for the damped (not driven) harmonic oscillator to stop oscillating.
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Resonance curve, small spring ~5.5cm, m=194.36g
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Figure 4.2: A typical resonance curve with the driving frequency resolved to 0.01 Hz



