
Experiment 4

Resonance: Forced, Damped, Harmonic
Oscillations

In this experiment, a driving periodic force keeps adding energy to the system, while damping
keeps taking the energy out of the system. After a while, initially irregular motion settles into a
steady-state, and it is the properties of this steady-state that are of interest here. Something very
interesting happens when the frequency of the driving force comes close to the natural frequency of
the oscillations of the system.
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Figure 4.1: Overall arrangement for the resonance experiment on an air track

Experimental procedure

This is a continuation of the previous two experiments, so the setup is again very similar except a digitally
controlled actuator is replacing a fixed point of attachment for one of the springs (see Fig. 4.1). The
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actuator arm at one end provides a continuous back-and-forth movement of the end of the spring, with
about 1 cm amplitude at variable frequency.�
�	! Review the procedure from Experiment 2 to ensure safe operation of the air track.�
�	! Weight the glider with the digital scale.�
�	! With the actuator turned off, start the glider oscillating to get an approximate value for the natural

frequency w0 of the system; use it to determine the range of frequencies that you will explore.�
�	! Set the actuator in motion. The record of x(t) will initially be an irregular motion (the transient),
settling into a steady-state motion of the form x = A cos(ωt+ϕ). As before, determine the frequency
ω for this steady-state motion; amplitude and phase angle are given by

A =
F0

m

1√
(ω2

0 − ω2)2 + (2γω)2
(4.1)

tanϕ = − 2γω

ω2
0 − ω2

. (4.2)

�
�	! Repeat as necessary to measure A for a number of ω values, enough to generate a well-resolved graph
of A(ω), as shown in Figure 6.2. Fit to Equation 4.1 to determine F0, ω0/m, and γ.

Hint: adjusting the driving frequency by a small amount will cause the resulting transient to settle
more quickly to a steady-state amplitude.�
�	! Show theoretically that:

1. A0 = A(ω → 0) = F0/keff .

2. A is a maximum for ω = ωr, with
ω2
r = ω2

0 − 2γ2, (4.3)

and

Ar = A(ω = ωr) ∼=
F0/m

2γω0
= A0

ω0

2γ
. (4.4)

Determine A0, Ar and ωr from the resonance curve and determine F0 and γ from them.

As you vary the actuator frequency ω, note qualitatively the relative phase ∆ϕ between the motion
of the actuator arm and the air car. There is a significant change when ω increases from ω � ωr to
ω � ωr. Comment on that change in your lab report.�
�	! The behaviour of a damped oscillator is determined by ω0 and γ, which are often combined in a
so-called “quality factor” Q = ω0

2γ .

CalculateQ for this oscillator. Q determines the “shape” of the resonance curve. If the two frequencies
for which the amplitude of the response goes down to 1/

√
2 of its maximum value (the “half-power

point”),

A =
1√
2
Ar

are ω+ and ω−, then the half-width of the resonance curve, defined as ∆ω = ω+−ω−, is approximately
given by ∆ω ∼= 2γ. Compare the predicted half-width of your resonance curve with the experimental
value.

The name “quality factor” derives from the fact that the value Q roughly corresponds to the number
of full oscillations that it takes for the damped (not driven) harmonic oscillator to stop oscillating.
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Figure 4.2: A typical resonance curve with the driving frequency resolved to 0.01 Hz


