
Experiment 5

Probing an Interaction Potential

Any interaction between objects can be described in terms of its so-called interaction potential, the
energy required to bring two interacting objects together as a function of the distance between them.
A famous example is the Lennard-Jones potential curve that models atomic interactions. A common
way of probing repulsive interaction potentials is to send a probe particle with a certain initial kinetic
energy into a target, and measure the distance of nearest approach that can be achieved, until a
repulsive force turns the probe particle around and repels it. In this experiment, the potential of two
interacting magnetic dipoles is explored on a linear air track in an almost friction-free environment.

5.1 Introduction

A glider of mass m with a strong magnet mounted on it is moving with a velocity v0 toward an oppositely-
oriented stationary magnet. The force between the two magnets is repulsive and increases the closer the
two magnets get, and at some point the glider will reverse its direction of motion. This point of nearest
approach depends on m, v0 and the strength of the magnetic interaction, as illustrated in Fig 5.1. This
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Figure 5.1: Probing the potential energy curve by sending energetic probe particles and measuring the
distance of nearest approach.

strength is given by a potential function U(r), with r as the separation of the two magnets. If the track
is truly free of friction, then U(r) is easy to determine: measure v0 at a position, say at A, where U(r) is
negligibly small. If the turning point C is at position xC , then conservation of mechanical energy gives

total energy at A = E(x = xA) = E(x = xC) = total energy at C .
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This yields
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0 + 0 = 0 + U(r) (5.1)

where point A is assumed to be so far away that the interaction between the two magnets is assumed to
be negligible, i.e. U(∞) = 0.

The track is not completely friction-free, and the frictional loss in kinetic energy while the glider travels
from A to C needs to be taken into account. Using the work-energy theorem,
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where v0 is the speed at A since the speed at C is zero. Wf is the work done by the friction forces, and
Wm is the work done by the magnetic forces. Since the magnetic force is negligibly small at A (the two
magnets are far apart),

Wm = −U(r) . (5.3)

Calculation of Wf

The origin of the frictional force Ff is the friction in the air layer between the glider and the track. For
small glider velocities v this force is proportional to v, producing an acceleration a = −kv, where k is a
constant. For this type of acceleration, we know that velocity v and position x depend on time t as follows:

a = −kv (5.4)

v = v0e
−kt (5.5)
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(5.6)

from which it immediately follows that

a = k2x− kv0 (5.7)

v = v0 − kx. (5.8)

Therefore, the work done by the frictional force while the glider moves from A to C is approximately1

given by
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Combining Equations 5.2, 5.3, and 5.9 gives U(r):
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mk2r2 −mkv0r. (5.10)

We can determine k by measuring the inital velocity v0 and the final velocity v1 of the glider near point A
where the magnetic force is still negligible; v0 as it approaches C and v1 after it has changed direction at
C. The velocity thus decreases by v0 − v1 over a path length of 2(xA − xC). Then, from Equation 5.5 we
have

k =
v0 − v1

2(xA − xC)
. (5.11)

Therefore, all quantities in Equation 5.10 can be measured, and U(r) can be determined.
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Figure 5.2: Experimental setup. The magnet on a glider probes the field of the magnet fixed at one end
of the linear air track. The distance of closest approach is where the glider reverses direction, v = 0. The
spring bumper at the far end reverses the direction of the glider to allow multiple “bounces”.

5.2 Experimental procedure

The experimental setup is illustrated in Fig. 5.2. As usual, an ultrasonic rangefinder is used to monitor
the velocity of the glider, from its initial value v0 far away from the region of interaction, to the point
of turnaround where v = 0. Below, the references to an “indexing block” are to an additional reflecting
surface that you can place on the air track to measure the x-coordinates of some specific locations along
the track.�
�	! Weigh the glider to obtain m.�
�	! Review the procedure from Experiment 2 to ensure safe operation of the air track, then carefully

level the air track. Verify that the air is turned off.�
�	! Place the indexing block against the fixed magnet then acquire a few data points to determine the
offset d1 between the rangefinder sensor and the face of the fixed magnet.�
�	! Carefully place the glider on the track and the indexing block against the glider magnet and acquire
this distance d2, then, without moving the glider remove the block and acquire the distance d3 to
the glider flag.

The distance between the faces of the fixed and moving magnets is then r = x− (d3− d2)− d1 where
x is the distance recorded by the rangefinder and approximately the distance between the centres of
the two magnetic dipoles.�
�	! With the elastic bumper located some 50 cm from the fixed magnet, turn on the air supply. Position
the glider so that the magnets are 2-3 cm apart, then release the glider. The glider will oscillate

1The result is not exact, since close to C, where the magnetic force becomes important, the acceleration a is not proportional
to −v anymore.
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between A and C, repelled in turn by the elastic band and the repulsion of the magnets.�
�	! Acquire some data and verify that the oscillations are well defined, without stray points, particularly
at the extremes of the travel, then acquire around 120 seconds of data to record some 10–12 of these
cycles. Note how the distance of closest approach (min(r)) increases as the glider loses energy due
to friction and losses in the elastic bumper.�
�	! Use eXtrema to determine the maximum points at A and minimum points at C of the waveform,
then for each A− C −A cycle:

• fit some data on either side of C to get values for v0 and v1, then determine their average velocity
v and the initial kinetic energy of the glider K = 0.5mv2.

• calculate k, using Equation 5.11, with v0, v1, xA and xC , then with r = r(C), use Equation 5.10
to obtain U(r).�
�	! Plot U(r) as a function of r.

Figure 5.3: Top: Extrema analysis of glider magnet/bumper interactions on a flat track. Highlighted
are the maximum points at A, minimum points xC at C and fitted lines that yield v0 and v1. Bottom
left: The potential energy data U(r) fitted to yield p using the included macro code. Bottom right:
log10(U) vs log10(r) fitted to a straight line.�
�	! Explore a possible functional relation between U(r) and r. For example, if U(r) is linear in r, a

plot on the linear scale along both axes will be a straight line. Alternatively, try plotting U(r) vs.
r on a log-log graph. A straight-line graph would correspond to U(r) ∝ rn, and by fitting you can
determine the power n. Theoretically, for two point dipoles, the interaction potential is U(r) ∝ r−3.
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Here is a short macro that fits U(r) ∝ (r − r0)p to estimate the power p for the interaction:

! select a measured point (r1,U1), ideally that of the nearest approach

! with U=a*(r-r0)^p and U1=a*(r1-r0)^p, then U=U1*((r-r0)/(r1-r0))^p

! change of variable: let b=r1-r0 => U(r)=U1*((r-r1)/b+1))^p

! then fit parameters are U1, b and p.

scalar\vary U1,b,p

U1=max(U)

r1=min(r)

b=0.5*r1

p=-log10(U1/min(U))/log10(max(r-b)/(r1-b))

fit\e2 log10(U)=log10(U1)+p*log10(1+(r-r1)/abs(b))

r0=r1-b

�
�	! Try adjusting the range of fitted data for v0 and v1. How sensitive is the power p to these changes?

5.3 Optional: an alternate experimental procedure

An interesting alternative that you may wish to explore modifies the experimental approach slightly.
Instead of using an elastic bumper on a level air track, it is possible to tilt the track up slightly at the
far end, ensuring a slight increase in elevation as the glider rebounds and moves away from the stationary
magnet. Since the increase in gravitational potential energy will be directly proportional to this elevation
gain, and it in turn is related to the distance along the track, ∆h = r sin θ, then Ug(r) = mg∆h ∝ ∆h ∝ r.
The resulting interaction potential is schematically illustrated in Fig. 5.4.
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Figure 5.4: A modified interaction potential for a slightly tilted air track.

The change to the experimental procedure is minimal: start by releasing the glider at the far end of
the raised track. Conservation of energy will ensure that after it bounces off the stationary magnet, it will
not get any higher than this starting position on the track, so there is no danger of the glider flying off
the end. With each successive bounce, the glider will be losing some energy to friction, and so at the next
impact the kinetic energy of the glider entering the interaction region will be diminished, thus probing ever
increasing values of r. The only modification to the analysis is to take into account the linear γr term
in the potential. Its value can be estimated from the position of nearest approach at zero kinetic energy,
which is the place where the glider will eventually settle after the bounces have stopped; it will, of course,
depend on the tilt angle.
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Can the exact form of U(r) be calculated?

An approximate calculation of the force between two magnetic dipoles can be done using elliptic integrals
for two cylindrical bar magnets aligned axially, if the distance between them is much greater than the
magnet dimensions (radius, length)2 but this is not the case in this experiment, so an empirical approach
may be the best one can do.

2Vokoun, David; Beleggia, Marco; Heller, Ludek; Sittner, Petr (2009). “Magnetostatic interactions and forces between
cylindrical permanent magnets”. J. Magnetism and Magn. Materials, 321(22):3758–3763. doi:10.1016/j.jmmm.2009.07.030.


