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Preface

Introduction

Mastering Electronics is not an easy task. While many concepts are straightforward, their ap-
plication to a real-world device are often non-trivial. Part of the difficulty is that in addition to
new concepts one often has to learn new numerical and algebraic tools that enable us to predict
the values of various components to use, to select their settings and operating points for optimum
performance. Putting it all together can be quite daunting.

In this laboratory you will use a variety of tools to achieve just that:

• hands-on experiments, where you will assemble real circuits using real components, meters,
wires, and devices — workstations with multi-meters, function generators, oscilloscopes, pro-
grammable power supplies, and bread-boarding stations are provided for this purpose;

• computer-based tutorials using software called Electronics Workbench, where virtual cir-
cuits are assembled, tested and analyzed using the common graphical “drag-and-drop” skills;

• graphing and numerical analysis of the results of your real or virtual experiments, with the
help of the physica software or its graphical version physicalab.

A typical lab experiment may consist of simulating a circuit, choosing the optimal value for some
component, then assembling the very same circuit on the breadboard in the lab, testing it, and
finally, analyzing your measurements and comparing them to the predictions of the theory learned
in the lectures.

Lab books, reports and marking

Some lab sessions are devoted to the computer-based exercises using Electronics Workbench. As
you go through the exercises, be sure to answer all the questions in your lab book and record
pertinent observations. Screen capture a copy of all the circuits that you simulate and import them
into your lab report. Be sure to save a copy of all the working circuits to your file space before you
begin the simulation.

Other experiments involve actual electronic components and circuits. Sometimes you will assem-
ble exactly the same circuits that you had simulated in an earlier experiment. A similar step-by-step
write up in the lab book is expected. All of your individual observations and measurements must
be included. Here you can capture the screen output and settings from the digital oscilloscope and
save it to your lab report.

Following every lab you are required to submit a lab report analyzing and summarizing the data
and the experimental procedures. The lab report should be typed, single-sided, and submitted in a
clear report cover/document folder. The grading is based on the following:
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• overall neatness and coherence in the structure of the report;

• completion of all the required simulated and experimental steps;

• inclusion of printouts, data tables, circuit and waveform sketches;

• thoughtful and understandable responses to the guide questions;

• adherence to the designated lab format.

You will find it most efficient to open a wordprocessor document at the start of the lab and
then enter observations, data, screen captures of circuits, graphs and oscilloscope traces as
you proceed with the experiment. This way, the overall structure of the lab report will have
been created and can be easily enhanced with further details and insights.

A lab report should start with an overall statement of purpose of the experiments. Then for each
exercise include a schematic diagram of the circuit and graphs of the waveforms observed, formula
derivations, a description of the theoretical behaviour of the circuit and comparison with your actual
observations, and answers to the pertinent questions. The presentation of your results should be
organized and complete, your diagrams titled and referenced, so that someone who is not familiar
with the experiments would have no difficulty understanding what was done.

At the end of the lab report, include a brief Conclusions section that summarizes the results and
discusses problems encountered and insights gained. The purpose is to reach the synthesis stage,
to give you a chance to establish intermediate milestones in your learning.

Completed lab reports will be collected at the beginning of the next lab; thus you have a full
week to complete your lab reports. However, you will find it easier to do the write-up within one or
two days of the end of the lab, while the details are still fresh in your mind. There will be no time
extensions given for late submissions. Late labs receive a zero grade; all labs must be completed
with a passing grade to satisfy the lab component for the course.

Be prepared!

Some of the experiments will require the full 3-hour lab period; therefore, it is essential that you
are fully prepared before attending your lab session.

• Arrive on time. Your lab starts at 2:00 pm sharp!
• Be sure you have read through the experiment in its entirety at least once before arriving.

Your partner cannot be expected to wait for you. Failure on the above two points can result in
you working alone (time permitting), or being asked to make up the experiment some other time
(depending on the availability of equipment).

Plagiarism

When you are working closely with your partner, it is understood that parts of the lab reports will
appear similar; however, plagiarism will result in a zero for that report. It is your responsibility
to consult the section on Academic Misconduct of the University Calendar prior to the first lab
session.
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Conventions used in this manual
☛
✡

✟
✠! Whenever you see a paragraph marked off with this symbol, it indicates an experimental
step. You are expected to perform one or several operations and write down your results and
observations in the lab book.

? When you encounter this symbol, it indicates a question or a problem. You are expected
to perform the necessary calculation (using pen and paper) and to provide a written answer
and, possibly, a brief explanation in your lab book before you proceed to the next stage of the
experiment.

Plotting and fitting with physica

An integral part of every lab is an analysis of the results, and it is best done with the help of a
scientific visualization/plotting/fitting computer program. The Physics Department uses a plotting
and fitting package called physica, written at the TRIUMF accelerator in Vancouver, BC. This is
the recommended software for use in the analysis of experimental data and in the preparation of
lab reports, theses, and scientific articles.

The main physica “engine” is an “old-fashioned” piece of software in the sense that it has a
command language and requires typing of commands at the prompt, and not clicking a mouse and
using visual widgets. On the other hand, it is easy to learn, its numerical engine is an extremely
powerful one, and a macro language allows you to automate many tasks using only a text editor.

• A simple to use interface to Physica available only on the Physics Department computers is the
Physicalab data acquisition and plotting software used in the first-year Physics labs. Open
a terminal window and type Physicalab at the command prompt to invoke the program.

• In addition, Physica Online is a web-based interface into physica which may be accessed
from any web browser. It is fairly self-explanatory and can be invoked by pointing a web
browser to

http://www.physics.brocku.ca/physica/

• For more advanced tasks, Physicalab and Physica Online provide an “expert mode” which
allow access to full capabilities of physica. In order to harness the full power of physica you
may need to spend some time learning its command language. i

References

In addition to your course textbook, numerous excellent introductory electronics books exist, and
you are encouraged to refer to them often. Some selected titles are listed below, with Brock Library
calling numbers shown where appropriate.

Other references such as manufacturers’ data books and the equipment manuals should be
consulted as needed; most of them are available online. The web page of the course has some select

pointers in the section References and is a good place to start.

1. D. Barnaal, Analog and Digital Electronics for Scientific Applications. Waveland Press, 1982.
TK7816 B34.
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Experiment 1

Introduction to Electronics Workbench

1.1 Preliminaries

You may be quite familiar with using a general-purpose computer, such as a Windows PC or a Mac,
but the computer environment you will find yourself in in the Electronics lab is more specialized,
and may present additional challenges. Be sure to attend the introductory lecture offered by the
Brock Information Technology Services (ITS) early on in the semester. The computing environment
around Brock evolves quickly; your lab instructor should have the most up-to-date information.

Currently, the ITS operates several computer labs within the Department of Physics (B203 and
H300 are the two largest ones), all of them deploying identical Linux-based workstations. Logging
on to any of them with your Brock assogned Campus username/password will bring you into the
exact same environment, and all the files in your home directory will be available to you (they are
stored on one central network server, accessible from all workstations equally).

In addition, this course makes a heavy use of a circuit simulation program called Electronics
Workbench (EWB, also known as the National Instruments Multisim due to a recent corporate
change). Unfortunately, there is no Linux-compatible version of this software, and it has to be
run from a separate central Windows server. You access this server using the same Campus user-
name/password.

☛
✡

✟
✠! Log on to the Linux workstation using the Campus username/password.

☛
✡

✟
✠! Click on the OpenSUSE icon at the bottom left of your screen, then click on Science followed
by Electronics Workbench to open login window to the Windows server. Enter the same
Campus/username/password and a Windows Desktop will appear.

☛
✡

✟
✠! Click on the EWB5 icon to start the program.

Move around and examine the menus and controls. Pausing a cursor over an unknown item
should bring up a bubble of a description of what the item is. The simulation is controlled by
the on/off switch at the top right corner of the screen. If you are lost, quit and restart the
program.

1.2 Virtual circuits in Electronics Workbench

Electronics Workbench is essentially “an electronics lab in a computer”, and the way it appears
on your computer screen is shown in Fig. 1.1. The white field in the middle is the workspace
into which you drag various components and devices found in the multiple parts bins divided into
several categories, just above the workspace. When you then bring the mouse near the edges of
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2 EXPERIMENT 1. INTRODUCTION TO ELECTRONICS WORKBENCH

Figure 1.1: Electronics Workbench screen

each component, they turn into dark dots representing nodes of your future circuit. Click and drag
until a line stretching out of a node reaches a node of another component, then release. You just
connected a virtual “wire” between the components. The wires snap to a grid (which can be made

explicitly visible through the Circuit menu), and as you move components around the wires stretch
and follow as needed.

After a few mouse-clicks, you can assemble an entire virtual circuit that includes passive and
active components, meters, oscilloscopes, and other virtual counterparts to the real devices and
instruments found in an electronics lab.

There is one important difference to working with a virtual circuit. As you are putting it
together, the program creates a set of mathematical equations that describe the circuit. As you
then flick the virtual ON switch, the computer proceeds to solve these equations, quickly and with
great precision, and reports and even plots the results. A variety of values can be swept through
quickly and automatically, to discover the optimum ones; an entire frequency response curve can
be obtained with a single click of a mouse.

What happens is that you are able to concentrate on the physics of the problem, and not on
the sometimes tedious details of setting up and solving a fairly large system of coupled linear and
differential equations. You do not need to be careful with the details of these calculations, and
you concentrate instead on making sure you understood the behaviour of the circuit and how this
behaviour relates to the underlying theory.

When you concentrate on the concepts and avoid applying by rote a memorized set of steps
you are studying for mastery. When you understand what is going on behind the equations, you
can apply that understanding to problems where the rote method is sure to fail. In our computer-
assisted labs you will learn to test your understanding, to make up circuits and to predict the results
mentally, then have the computer verify (or not!) your predictions. You will build up your intuition
on the subject of Electronics. In some sense, your efforts will closely parallel what physicists do



1.3. REAL AND IDEAL METERS 3

every day in their research, something often called “the scientific method”: organize your knowledge,
develop a theory, make predictions, test them by experiment.

The results of this exploration need to be described in a complete, coherent fashion to allow a
reader (or marker) familiar with the subject the opportunity to understand your methodology and
attempt to reproduce your data. Do not assume that the reader has intimate knowledge of your
experimental setup and goals.

For each of the following exercises, explain fully the procedures undertaken, your observations,
followed by a short summary of your results. Include screen captures of all circuits, simulation
output, data tables and meaningfully scaled graphs. Do not refer to the lab manual; include all
pertinent details, in your own words, as part of the report. Support all statements and conclusions
with experimental evidence or reasoned arguments.

Hint: You can screen capture Electronics Workbench output by going to the OpenSUSE start
menu then clicking on Accessories followed by Screenshot. In the window that opens, select to
capture a screen region, outline the area of interest by pressing the left mouse and moving the
cursor to outline a rectangular region, the release the buttton and save the output to a file. You
can conveniently include the schematic, instrument settings and output, as well as descriptive text
(A, textbox from the Miscellaneous submenu) as one capture that can be saved and imported to a
document. Do not append printouts to the end of the lab report.

1.3 Real and ideal meters
☛
✡

✟
✠! Consult your notes or the Web to determine the internal configuration of a real (non-ideal)
voltmeter and ammeter.

☛
✡

✟
✠! Pull down a battery (in the sources bin, move the mouse over the icons and a bubble with the
name appears) and a multi-meter (in the instruments bin) into the worksheet. Double-click
the multi-meter icon for a close-up view. Verify the multi-meter is in voltage mode, i.e. that
V is highlighted. Practice connecting/disconnecting the wires and moving the components
around the worksheet. Move the components to verify that the wires are properly connected
to them and that the electrical circuit is complete. Connections display a black dot.

? When do you see a positive reading on the meter? a negative one?

☛
✡

✟
✠! While the meter is connected to the battery, switch it into the current mode by pressing A .

? What happened? Why do you never do this to a real meter? Refer to the internal circuit for
a real ammeter to describe what happened. Click the multimeter Settings button for further
insight. What is the most common way used in real multi-meters to protect against errors
like this?

☛
✡

✟
✠! Switch the meter back to voltage mode. Pull down and insert a 1 kΩ resistor in series with
the battery. (Position the resistor directly over an existing wire, and release; the resistor will
insert itself.) Vary the resistance; is the voltage on the multi-meter changing? (Hint: you
may have to go to pretty high R values!) Try to find the point where the meter reads exactly
1

2
of the nominal battery voltage.

? In EWB the batteries are always ideal sources; however, the meters are not. The point of
1

2
-voltage is where the internal resistance of the (non-ideal) meter is exactly equal to the

external R. Explain your result and provide a calculation to support your observation.



4 EXPERIMENT 1. INTRODUCTION TO ELECTRONICS WORKBENCH

1.4 Review of basic electronic components

While logic gates are all that is required to construct a digital circuit, you will find that to interact
with your digital system some familiarity with the behaviour of basic electronic components such
as resistors, diodes and transistors, is necessary.

• The resistor is a linear circuit element in that it obeys Ohm’s Law: V=I*R, where a voltage V
across a resistance R causes a current I to flow through the resistor. The resistor is typically
used in series with another component as part of a voltage divider or to limit the circuit
current.

• The ideal diode can be visualized as a switch that is turned off (R ≈ ∞) until a positive
voltage (forward bias) V ≥ Von is applied across the terminals. The negative diode terminal
(cathode) is represented by the flat line. When turned on, a voltage Von will be present ascoss
the diode and R ≈ 0. The value of Von is ≈ 0.6V for a Silicon diode, ≈ 0.3V for a Germanium
diode and ≈ 1.5V for a GaAs red light-emitting diode (LED). Continuous diode currents
much greater than 10-20 mA will cause LEDs to burn out.

• The bipolar transistor is a three terminal device. The terminal with the arrow is the emitter,
the opposite terminal is the collector and the centre terminal is the base. This device is a
current amplifier in that the emitter-collector current iCE = β ∗ iBE , the base-emitter current
times the transistor current gain β. The base-emitter junction behaves like a diode so that
iBE ≈ 0 and RCE ≈ ∞ until VBE ≥ Von. As VBE increases, RCE → 0.

In the digital domain, a transistor is typically used to switch on/off devices that require more
current than a logic gate is capable of supplying, such as LEDs, lamps and relays.

Figure 1.2: Transistor as a switch

You can incorporate these components in the
circuit as shown. Use a scope (from the Instru-
ments menu) to monitor the base and collec-
tor voltages. Drive it with a 10 V peak-to-peak
square wave centered at zero volts with a fre-
quency of less than 1 Hz. The round indicator
probe turns on (solid color) at 2.5V. The LED
is on when the arrows are filled in.
☛
✡

✟
✠! Start the simulation and observe the be-
haviour of the circuit. Note when the LED
is on and when it is off (circle below) in
terms of the voltage at the base, Vb, and at
the collector, Vc, of the transistor and the
corresponding voltages across the compo-
nents:

Vb Vc LED probe

low on / off on / off
high on / off on / off
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? Explain the operation of the circuit for the two input states. What is the purpose of the
470 Ω and 10 KΩ resistors? What logic operation does the transistor perform? What is the
maximum current that could flow through the LED?

1.5 Digital indicators and controls
☛
✡

✟
✠! Clear the screen of all components, or simply open a new circuit page. Find and drag down
into your circuit page the word generator (from the Instruments submenu) and several one-bit
logic probes (from the Indicators submenu). You can enter sequences of 4-digit hexadecimal
numbers in the data window or load a stored pattern. The sequencer can be single-stepped
or made to cycle through this list at a certain predetermined pace. The sequencer can also
be put into an infinite loop, repeating the steps you programmed and returning back to the
beginning.

For each number, the corresponding pattern of high/low voltage levels is produced on its 16
outputs. Edit the pattern list to contain a few lines with different bit patterns; try to include
FF, 00, and other interesting bit patterns in your sequence. Step through the sequence and
observe how the pattern of indicators connected to the sequencer output lines follows.

☛
✡

✟
✠! Logic probes are ideal sensors of the logical state of any wire in the circuit; a more realistic
way is to use light-emitting diodes (LEDs). Drag several LEDs or an eight-LED bar graph
indicator into your circuit, and connect the anodes of each LED diode to the outputs of the
sequencer. Connect the cathode ends to ground through 220-Ω resistors. These serve as
current-limiting resistors, without them the LEDs would “burn out” almost instantly. Enter
a two-line sequence AA, 55 which will create an illusion of lights running up your LED bar
graph.

Modify your sequence to create a single running light: 00000001, 00000010, 00000100 etc.

☛
✡

✟
✠! Replace the LED bar graph with a 7-segment LED display. Assemble the circuit shown.

Figure 1.3: Controlling a 7-segment LED

The 7-segment LED display has seven inputs
that each control the lighting up of a particular
segment of the display. Thus for each pattern
of bits produced by the pattern generator, there
appears a pattern of lit LED segments. The
labeling convention and pin assignment for each
segment can be found in the help menu for the
device.

☛
✡

✟
✠! Map each segment to an output of the

word generator, then generate a table of bit patterns that correspond to the 7-segment repre-
sentations of the decimal digits 0-9. Program the list of patterns into the generator’s table to
produce a sequence of seven-segment digits from 0 to 9. Set the pattern generator into a loop
mode over the list you entered, and verify that the display appears to “count” from 0 to 9.

☛
✡

✟
✠! For an extra challenge, expand the list to 16 entries, one for each of the hexadecimal digits.
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1.6 Bit combinations control a 7-segment LED display

The previous section demonstrated a “brute-force” approach; usually the job of controlling the
individual segments of a 7-segment display is given to an integrated circuit called BCD-to-7-segment
encoder.
☛
✡

✟
✠! From the DEC menu in Flip/Flop bin, place a “Generic BCD-to-seven-segment decoder” into
your circuit, between the sequencer and the 7-segment LED display. The conventional order is
that on the BCD side the bit A is the least significant bit, and that the seven-segment display
inputs are A-to-G left-to-right. Make sure that the LT (lamp test), BI (blanking input) and
RBI (ripple blanking input) are tied high, i.e. attached to a Vcc ≡ 5V. Modify the sequencer
program to count up from 0 to 9, and then back down to 0, a total of 19 steps.

Lab Report

Submit a lab report consisting of the work undertaken during this lab. waveforms observed, formula
derivations, a description of the theoretical behaviour of the circuit and comparison with your actual
observations, and answers to the pertinent questions. The presentation of your results should be
organized and complete, your diagrams titled and referenced, so that someone who is not familiar
with the experiments would have no difficulty understanding what was done.

At the end of the lab report, include a brief Conclusions section that summarizes and compares
the results from the simulated and hands-on portions of the lab and a discussion of any problems
encountered and insights gained.

Note: The lab report for this experiment is due before the beginning of the next scheduled lab
session, one week later. Late labs receive a zero grade. To satisfy the lab component for the course,
all lab reports must receive at least a passing grade. Be sure to have read and are familiar with the
preface section of this lab manual.

Note: You need to prepare for the next experiment by designing several logic operations using
NAND gates. Be sure to have these circuits ready to use.
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Experiment 2

Logic Gates

The principles of digital logic govern the operation of all modern computers. The objec-
tive of this experiment is to become familiar with basic logic gates and their appropriate
logic truth tables. These logic gates are then used to construct various simple logic
circuits such as an adder, a latch, and a binary counter.

2.1 Circuit assembly techniques

You will be using a breadboard to assemble and test your hands-on circuits. The breadboard
provides a convenient and organized way of implementing circuits, making quick component changes
and providing trouble-free circuit connections. On the board you have access to five pairs of binding
posts BP1-BP5, red and black. Also, there are five BNC coaxial connectors. A cable supplies the
board with ±15,+5 and 0 Volts DC. The black binding posts and the outer ring of the BNC
connectors have a common connection to ground, or 0V. These signals are all available to the
protoboard, the matrix that you will build your circuits on, as shown in Figure 2.1.

Figure 2.1: Electronics lab breadboard connection matrix

7
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To make the experience of assembling a working circuit more enjoyable:

1. Be sure that the power is OFF;

2. verify by direct measurement the values of all the circuit components;

3. minimize the use of jumper wires by connecting components directly to one another;

4. verify that the jumper wires used are not broken (test for 0 Ω resistance);

5. assemble the circuit in a systematic and organized fashion;

6. check off each component as you add it to your circuit;

7. verify that your assembled circuit connections correspond to those of the schematic diagram.

Having taken the previous steps, turn ON the power and test the circuit for proper operation.
If the circuit does not behave as expected, you will need to do some troubleshooting. Use the

schematic diagram as a guide to determine the voltage levels that should be present at various
points of the circuit, then use a voltmeter to measure these nodes.

Develop a systematic approach to assembly and verification of the circuit that you are building.
As the circuits get more complicated, you will find it advantageous to construct the circuit in stages,
verifying the proper operation of the circuit after each progressive step.

2.2 Combinations of NAND gates implement other opera-
tions

Additional components required

• two 7400 IC chips and one 7473 IC chip
• four LEDs and five 470 Ω current-limiting resistors

Figure 2.2: An OR gate made from NAND gates

NAND gates can be com-
bined to form other logic gates.
You must prepare for this lab
by designing and drawing the
schematic diagrams of the follow-
ing circuits, made up entirely of
NAND gates:

• an AND gate
• an exclusive OR (XOR)
gate

• a half-adder
• a gated latch

In the example shown in Fig-
ure 2.2 three NAND gates form
an OR gate. The LEDs on this
diagram monitor the state of the
inputs and the output. Each
one is connected in series with a
current-limiting resistor R.
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Figure 2.3: Pinout of a 7400

Most integrated circuit (IC) chips contain a number of logic
gates. In this experiment, the 7400 chip used contains four sep-
arate NAND gates. Make sure you start by making the power
connections (ground and +5 V).

For each of the above circuits (an AND gate, an XOR gate,
a half adder, a gated latch):
☛
✡

✟
✠! Draw the circuit or create it using EWB. Label your gate
connections with the corresponding chip gate pin numbers,
as shown in Figure 2.4. This will ease the process of circuit
assembly and troubleshooting.

☛
✡

✟
✠! Assemble the circuit. Begin by installing the 7400 chip. Connect the power pins. Connect the
gates and switches with jumper wires. Add the LEDs. Verify the correct orientation of each
LED by connecting one end of the current-limiting resistor to the LED anode and the other
end to +5 V. If the LED glows, it is inserted correctly. Re-connect the resistors as shown.

☛
✡

✟
✠! Verify the circuit operation by testing all input combinations. Record the results as a truth
table. For reference, data sheets that describe the logic states and expected operation of all
these chips are available on the Web. You can verify your results using Electronics Workbench.

☛
✡

✟
✠! Include in your report the Boolean explanation as done in the OR example, Figure. 2.2.

2.3 A binary counter

Figure 2.4: A binary counter

The binary counter, shown in Figure 2.4, is made using a 7473 dual JK flip-flop chip. This chip
has several modes of operation, depending on the the signal levels at the J and K inputs. With
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J=K=+5 V, the flip-flop performs a toggling function, so that the Q output changes logic state
whenever a high to low transition occurs at the CP (clock pulse) input. Thus the Q output changes
state at one half the rate of CP.

The switch, resistors and NAND gates make up a pulse generator that drives the counter input.
When an electromechanical switch makes or breaks a contact, a series of pulses lasting some 1-5 ms
are generated. This noise is known as contact bounce and is very undesirable in fast digital circuits.
Since the gate delay and hence response time of flip-flops is around 10 ns, many pulses would be
counted every time a switch is toggled, resulting in an erratic count. To debounce the switch, two
NAND gates connected as an RS latch are used.

? Apply the above information along with the truth table for the RS latch to describe how the
circuit debouncing is preformed. Again, the Web or your textbook may be a useful resource.

☛
✡

✟
✠! Assemble the switch, resistors, gates and LED for the debounce circuit, following the assembly
procedures previously outlined. Document how the output of the debounce circuit behaves as
the switch is toggled. Is this the behaviour of an RS latch?

☛
✡

✟
✠! Add the counter circuit components. Graph the input pulses at CP from the debounce circuit
and the values of 20 and 21 below one another and using the same arbitrary time scale. Switch
movement B −→ A −→ B represents a single input pulse.

Advise the demonstrator when the counter is working and demonstrate its operation.
☛
✡

✟
✠! Remove the debounce circuit from the CP input of the counter. Reconnect the switch as
follows: A to +5V, B to 0V, and the common point to CP. Toggle the switch. Graph the
output states of the counter as you did before. Describe your results.

☛
✡

✟
✠! Remove the switch from the CP input. Connect CP to one of the BNC1 contacts on the
breadboard. Connect a cable from the BNC1 connector to the SYNC output of the signal
generator. This output is a 0-5V square wave that can be used to clock digital circuits. Set
the function generator frequency to 1Hz and describe the circuit behaviour.

☛
✡

✟
✠! Slowly increase the frequency and note when each of the three LEDs changes from a noticeable
on/off flickering to a steady glow. Estimate from these results, the response time of your eyes.

Lab Report

Submit a lab report consisting of the work undertaken during this lab. Start the report with
an overall statement of purpose of the experiments. Then for each exercise include a sketch or
printout of the circuit and graphs of the waveforms observed, formula derivations, a description of
the theoretical behaviour of the circuit and comparison with your actual observations, and answers
to the pertinent questions. The presentation of your results should be organized and complete, your
diagrams titled and referenced, so that someone who is not familiar with the experiments would
have no difficulty understanding what was done.

At the end of the lab report, include a brief Conclusions section that summarizes and compares
the results from the simulated and hands-on portions of the lab and a discussion of any problems
encountered and insights gained.
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Experiment 3

Combinatorial and sequential logic

In combinatorial digital logic circuits the state of the outputs is determined by the state
of the inputs, and a Boolean logic equation or a truth table can describe the function
of the circuit in a very compact way. In the sequential logic, the state of the inputs at
some earlier time may also matter, and a full desription of the function of the circuit
involves a timing diagram, with logic levels, transitions between levels, and their time
relationship presented together. Many circuits combine both elements.

All digital circuits require some time for an output to respond to a change of state at
the input. This is known as the propagation delay of the circuit. This delay needs to be
taken into account in order to to properly analyze circuit behaviour and timing.

3.1 Divide-by-two flip-flop

Figure 3.1: A :2 flip-flop

A D flip-flop propagates the state of its input D to the
outputs Q and Q̄ at the rising edge of the clock pulse,
CP. The output is held after CP goes low. In the “feed-
back” mode, where Q̄ is connected back to D as shown,
it will take two clock cycles to return to the initial state.
Thus a single D flip-flop performs a simple divide-by-
two.
☛
✡

✟
✠! Assemble the circuit shown. Use the logic analyzer
to monitor the timing of the divide-by-two oper-
ation. The logic analyzer samples the logic states
of the input lines at a rate determined by an in-
ternal or external clock. Check by double-clicking
on the analyzer icon that this internal clock is se-

lected and set to a frequency of 5-10 times that of the input signals, otherwise you may not
see any meaningful analyzer output.

☛
✡

✟
✠! Add the extra connection between the Q̄ and the logic analyzer to monitor the second output
as well. Make a record of the analyzer timing diagram.

☛
✡

✟
✠! Increase CP and the analyzer clock to observe and determine the propagation delay from CP
to the Q outputs. Record the analyzer output.

? Consider the relationship between the various signals in the two timimg diagrams. Why does
the timing in the two diagrams seem to differ? Based on your observations, write down the

11
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truth table for a D flip-flop. Compare with that of a real D flip-flop device, such as a 4013,
by reviewing the device data sheet.

3.2 A binary counter with D flip-flops

Several D flip-flops connected in a chain perform as a binary ripple counter, each stage undergoing
a change of state half as frequently as the previous one. In this circuit, slow the clock down to 1 Hz
or so, and use just a set of LED indicators to read off the binary count.

☛
✡

✟
✠! Assemble the circuit as shown and verify its operation. You may want to assemble one binary
digit first, then select several circuit elements, and Copy and Paste several times to expand
to more digits. Label the most- and the least-significant bits as MSB and LSB, respectively.

Figure 3.2: A binary counter

? The logic analyzer allows you to monitor the output waveforms and thus to verify the operation
of the counter. Taken together, the four Q output lines represent a 4-bit binary value; how
does this value change with every transition of the clock? How does the value at the Q′

outputs change? Explain.

? Determine the propagation delay for each of the flip/flops and then the total propagation
delay of the entire ripple counter of Fig.3.2. What is the maximum clock rate that should be
applied to this circuit? How do the outputs behave as the circuit is overclocked beyond this
maximum frequency? Explain this behaviour in terms of propagation delays.

? Predict the propagation delay of a 10-bit ripple counter. iHow does the propagation delay
affect the size of a ripple counter? Is this a desirable characteristic in a counting circuit?
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3.3 One-of-eight decoder

A key device needed in multiplexing/demultiplexing applications is a binary to one-of-eight decoder,
similar to the one shown in Figure 3.3.
☛
✡

✟
✠! Assemble the decoder as shown, drive it with the binary counter from the previous section,
and verify that only one of the lights at a time, in sequence, are turned on by the binary
counter.

? Use the analyzer to record the complete timing diagram for the 3-bit binary to one-of-eight
decoder, including the clock pulse waveform.

? Given that all digital components in EWB exhibit by default a 10 ns propagation delay, what is
the propagation delay from the clock to each of the decoder outputs? Verify this by observing
the analyzer output. How could you decrease the propagation delay of the counter/decoder
circuit in Figure 3.3?

Figure 3.3: Binary to one-of-eight decoder

3.4 A design challenge

The challenge is to design an extension of the decoder circuit that lights a green indicator if and
only if a special sequence (a password) of two 3-bit numbers is presented at the input, and a red
indicator for any other combination of two input numbers.

☛
✡

✟
✠! Sketch a flowchart of the logical steps that are required to solve the problem. From this,
develop a timing diagram of the different signals that your circuit needs to generate.

☛
✡

✟
✠! Replace the binary counter with the pattern generator. Verify that you know the pattern
of 3-bit inputs that turns on any desired light. Note that the Data Ready output of the
pattern generator makes a low-to-high transition when the the next data word is latched at
the outputs.
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? Monitor the circuit with the logic analyzer. How does the timing of your circuit compare with
that of your timing diagram?

? How would you expand your circuit to decode a series of three 3-bit numbers?



name (print) student ID lab date grade

Experiment 4

Oscillators and clock circuits

One does not always have the convenience of a frequency generator. From simple os-
cillator circuits that provide buzzing tones, to security system’s delay circuits, to the
crystal-based clocks that provide the heartbeat of every modern computer, a variety of
methods exists to generate oscillating signals. In this lab we shall explore some of them.

4.1 555 timer IC as a square wave generator

Additional components required

• one 555 timer IC chip
• miscellaneous capacitors and resistors

Figure 4.1: 555 Oscillator

The data sheet for this part describes the various
modes of operation, connection diagrams and resulting
waveforms. This timer has a monostable, or one-shot,
mode where a high to low transition on the trigger input
initiates a single pulse of a specific duration at the output.

The circuit can also be configured as a self-triggering
(astable) pulse generator (Figure 4.1). You should pay
particular attention to the charging and discharging equa-
tions for the astable configuration of the 555 timer, as they
determine the duty cycle of the output pulse. The duty
cycle of a digital (on/off) waveform refers to the propor-
tion of the time that the signal is on relative to the overall
period of the signal.
☛
✡

✟
✠! Construct the 555 oscillator circuit shown in Fig-
ure 4.1. Refer to the internal schematic diagram
shown in Figure 4.2 to understand its operation.

☛
✡

✟
✠! Choose R1, R2, and C for an output of 1 kHz with as close to 50% duty cycle as you can. Verify
that the circuit works and note the values you have chosen. Use the digital oscilloscope to
monitor the output signal as well as the voltage at the capacitor and record these waveforms.

• ? What is the range in the duty cycle of the 555 output? Consider the changes/additions
that you might make to the circuit to produce output pulses of a relatively small duration,
for example, a 10% duty cycle.

15
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Figure 4.2: 555 bistable oscillator showing internal components

☛
✡

✟
✠! Explore what happens if you disconnect the control voltage (CV) input pin 5 and instead
connect it to a wiper of a 10-kΩ potentiometer that is connected between +15V and ground.
This circuit is called a voltage-controlled oscillator.

? Comment on the variation in duty cycle as you vary the control voltage. How does the off
time vary with changes in CV? Explain your observation using the fact that the oscillation is
based on the exponential discharging of a capacitor.

Review: operational amplifiers

The two triangle shaped devices internal to the 555 chip are operational amplifiers. The output of
an Op-Amp is given by Vo = A ∗ (V+ − V−) where V+ and V− are the voltages present at the two
inputs and A is the open-loop voltage gain of the Op-Amp. This gain is typically very large, i.e.
A ≈ 105, so that a tiny difference in the input voltages will cause Vo to swing between the limits
set by the power supply voltages of th Op-Amp.

In the 555 timer chip, the Op-Amps are used in the open-loop configuration (no feedback) as
voltage comparators. The output of a comparator is high when V+ > V− and low when V+ < V−.
When V+ ≈ V−, circuit noise will cause the output to randomly swing between low and high states.
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4.2 Crystal oscillator and ripple counter

Additional components required

• one 4.096-MHz crystal
• one 4060 ripple counter IC chip
• 1-kΩ and 1-MΩ resistors
• 10-pf and 39-pF capacitors

Figure 4.3: Crystal-based digital oscillator

Crystal oscillators are available in a variety
of frequencies, which are determined by manu-
facturing them to exacting size and shape spec-
ifications. Often one encounters unusual val-
ues, such as the 4.096-MHz crystal provided
for this lab. The reason for choosing such a
strange value is to be able to generate oscilla-
tions of much lower frequencies by using multi-
stage divide-by-two circuits. It just so happens
that 4096 = 212, and all we need is to build 12
divide-by-two counters in a row to get to 1 kHz,
for example.

A convenient device is a 14-stage ripple carry
binary counter, 4060. Depending on which out-
put one chooses, one can obtain from a divide-
by-29 to a divide-by-214. Thus with a single IC
we can generate frequencies as low as 250 Hz,
a convenient frequency if one wishes to build
a small timer circuit with a time resolution of
about ±0.002s.

Note how the suggested component values
are selected to ensure a reliable 50%-duty-cycle
oscillation, by keeping the crystal at the mid-
point of the voltage divider formed by the 1 kΩ
resistor and the 39 pF capacitor, i.e. how for
ω = 2π × 4.096 MHz

|ZR=1 kΩ| ≈ |ZC=39 pF | .

Also note that since the oscillator components are not directly connected to the chip power
supply, the oscillator frequency is not affected by variations in the power supply voltage.
☛
✡

✟
✠! Download a copy of the 4060 data sheet and review the internal schematic. Implement the
circuit shown in Fig. 4.3. Check other outputs as well. Which output stage provides the 1-kHz
signal?

☛
✡

✟
✠! Determine with the aid of a two-channel oscilloscope the propagation delay tpd for one of the
flip/flop stages of this ripple counter. Measure also the delay of several (N) stages. Does this
delay represent an integer multiple N of the single stage delay tpd? Should it? How does your
result for tpd compare with that stated in the data sheet? Explain any noted discrepancy.
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☛
✡

✟
✠! Use HP function generator to provide a 250-Hz trigger signal to the oscilloscope and monitor
the output of your crystal oscillator. HP signal generators contain high-precision internal
frequency standards with very low phase drift. Carefully adjust the function generator’s
frequency until your oscillator’s signal appears completely stable, then wait a few minutes
and observe if the frequency has drifted. See if cooling your circuit with a gentle air flow
causes changes.

? Why would it be a bad idea to use a 555 circuit as the frequency source for your timer circuit?
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Experiment 5

Building a counter

This experiment explicitly involves several stages of a single project, from a conceptual
design, to computer-based simulation, to physical implementation and debugging. The
project: a decimal counter. Note that some of the necessary data is not provided on the
diagrams of this experiment; it is essential that you consult the appropriate datasheets
directly.

5.1 Building a device, stage by stage

Counting physical events is a common requirement that illustrates well many of the essential ele-
ments of a successful real-life application of electronic circuits. It involves:

the physical stage: the closing of a pair of mechanical contacts, a change in the illumunation of a
photosensor, a voltage drop that activates a solid-state relay or a transistor. Here, the issues
of imperfections, of efficient signal transduction (from the physical into the electronic realm),
and of signal conditioning and noise resilience play an important role;

the signal processing stage, where the now electronic (logical) signal is processed, tallied up,
analyzed or compared with a desired reference condition;

the display and feedback stage, where the results are either reported to the user, recorded for later
analysis, or used to provide signals to actuators and control devices of a physical system. At
this stage the feedback loop back to the physical realm is closed.

Pressing a push-button switch, counting these contact closures, and displaying the resulting tally
on a seven-segment display are the three stages of this lab experiment, but this general three-stage
structure is shared by virtually all electronic devices involved in the interactions with the physical
world.

? Sketch a block diagram, representing the way an electronic system would gather the informa-
tion about the physical world, process it electronically, and implement the resulting control
decision. Briefly describe an example, different from this experiment, that you diagram may
represent.

? For your example experiment, indicate the approximate bandwidth requirements, or the
amount of information per unit time, that you expect to be communicated between the various
blocks on your diagram. Where do you expect the bottlenecks to occur?

19
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Figure 5.1: EWB circuit diagram

5.2 A virtual prototype

A 74192 IC is a convenient decimal counter, capable of reset to zero, preloading with a specified
value, and of counting both up and down, as well as generating carry and borrow signals that allow
one to construct multidigit counters. We will explore only a very limited subset of its capabilities.

☛
✡

✟
✠! Use Electronics Workbench to simulate the circuit shown in Fig. 5.1. Initially, connect a
74192 and a four-input BCD-decoded seven-segment display, and connect a switch that will
alternately toggle between a Vcc and the ground directly to the “Up” pin on the IC. A virtual
switch toggles cleanly and instantly and will require no de-bouncing.

☛
✡

✟
✠! Verify the operation of the counter. You may want to add additional elements such as logic
probes on the outputs of the 74192, to make this task easier. See if using the switch to toggle
the “Down” input of the 74192, while holding its “Up” input high produces the expected
down-counting.

? Download from the web, or look up in a data book available in the lab, the datasheet of a
74192. How is the counting by 10 realized inside the IC out of four flip-flops connected in
series? What is this technique called?

☛
✡

✟
✠! Now complete the full circuit of Fig. 5.1 by connecting the 555-based debouncer. Choose ex-
ternal RC values so that the width of a pulse generated by the monostable is longer than about
50ms, a typical settling time of a real micromechanical switch. Use the virtual oscilloscope to
verify that your calculations are correct and the pulse width is as expected.
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Figure 5.2: A real circuit involves additional details

5.3 Circuit realization

Additional components required

• one 555 timer IC
• one 74192 decimal counter IC
• one 7447 BCD-to-seven-segment decoder/driver
• one seven-segment LED, common anode
• miscellaneous capacitors and resistors, momentary switches

You are now ready to implement the real circuit. In addition to the de-bouncing of the real me-
chanical switches, the magic “BCD-encoded seven-segment display” has to be made out of separate
components: a 7447 encoder/driver IC, current-limiting resistors, and a common-anode seven-
segment LED display, as illustrated in Fig. 5.2.1

☛
✡

✟
✠! Start building the counter circuit, starting with the final stage, the LED display. Make sure
you have selected a common-anode LED display, and determine its pinout. The common-
anode requirement is essential, as the 7447 decoder uses negative logic: it sets those segment
lines it wants to activate into the low state. Do not forget to connect the common anode pin
to the Vcc (not shown on the diagram).

? The suggested resistor values may not be optimal. Consult the 7447 datasheet, and that of
a typical LED display device, to determine the optimal current that would make the LED
display as bright as possible yet will not overload the 7447 driver, either by exceeding the
current-carrying capabilities of a single driver line, or by exceeding the total power dissipation
limits for the worst-case scenario of all seven segments being lit at once (the digit “8”).

☛
✡

✟
✠! Add the 74192 counter. Use a TTL square wave from the function generator set to a frequency
of 0.5–5 Hz as the counting input.

1Note that our version of Electronics Workbench does not have a common-anode seven-segment display, only a
common-cathode one, so if you were to simulate the circuit in Fig. 5.2, the display would show patterns complementary
to those you would expect for the decimal digits. In the lab, the real common-anode displays are available, so the
circuit should work as expected.
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? Which is the active edge of the counting input? Sketch a timing diagram for a sequence of
several cycles of the counter, starting with the state of the outputs that represents the decimal
“9”, and including all relevant input and output lines.

☛
✡

✟
✠! Complete the circuit by adding a push-button switch, debounced with the help of a 555
monostable. Verify a reliable counter operation. Choose the RC values so that the fastest
sequence of pushes of the switch that you can produce does not miss any and does not have
any extra ones.

? Vary the RC until the time constant is too short to provide effective debouncing and you just
start seeing multiple counts for a single pressing of the push button. What is the minimum
pulse width that would provide reliable debouncing?

☛
✡

✟
✠! Time permitting, explore other modes of operation of the 74192. A second switch, debounced
with another 555-based one-shot, can be connected to the “Down” input, providing two-button
up/down counter. A combination of four bits could be preloaded into the counter by pulsing
on a “Load” input (active low). This is a decimal counter, so normally it shows only values
from 0 to 9; what would happen if you pre-loaded a binary-coded four-bit value that is greater
than 9 ?
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Experiment 6

Four-bit multipliers

In this lab, we implement in hardware some algorithms that multiply two 4-bit numbers
to yield an 8-bit result. The operating speed and hardware complexity of these circuits is
explored.

In digital electronics there are usually several ways to express a design in hardware. Generally,
the various approaches to solving the problem involve a trade-off between the speed of operation
(clock cycles or gate delays) and the hardware complexity (gate count) of the resulting circuit. To
implement an elementary mathematical operation, namely the multiplication of two 4-bit binary
numbers, several possibilities exist: a brute-force repeat addition with counting, a shift-and-add
scheme similar to the decimal multiplication scheme we learned in the elementary school, etc. Some
algorithms naturally lend themselves to a sequential implementation, using counters to sequence, or
loop, the hardware a specific number of times, and an array of flip/flops known as an accumulator, to
store intermediate results. Some other algorithms are naturally parallel, and their implementations
can be in the form of a purely combinatorial circuit. Hybrid versions also exist.

? What is the range of binary values that multiplying two 4-bit numbers can yield? How many
bits may be required to store/display the result of such an operation?

6.1 A summing multiplier

The most basic multiplication algorithm simply involves repeated addition of a multiplicand, with
the number of times the addition is performed specified by a multiplier, i.e. 3 ∗ 5 = 5 + 5 + 5. A
possible implementation of this algorithm in a 4-bit adder circuit is shown in Fig.6.1.

For proper operation, any sequential circuit requires:

• initialization to some known state; and

• a clock to sequence the logic.

In the circuit of Fig.6.1, a low on the reset line clears the accumulator so that the initial sum is
zero. The rising edge of the clock latches the data into the accumulator, and an add/store operation
is performed each clock cycle. The clock signal can originate from a switch that single-steps the
circuit, or automatically from a square-wave oscillator.

To perform the addition of each bit, a full adder is used. The carry output of each adder ripples
to the carry input of the adder representing the next-most-significant bit. The output of the adder
is latched by a D-type flip/flop with clear. The word to be added (multiplicand) provides one input
to the adder; the other input consists of the data currently stored in the accumulator.

23
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Figure 6.1: A 4-bit adder with accumulator

☛
✡

✟
✠! Simulate this circuit. Try some input word values and step the circuit repeatedly by hand.
What happens when the 4-bit capacity of the accumulator is exceeded?

? Given that the logic components used have a 10-ns propagation delay, what is the total
propagation delay for the circuit? Which signal path determines the operating speed of this
circuit? You might want to use the logic analyzer to monitor the timing relationship of the
various signals.

☛
✡

✟
✠! Increase the frequency of the clock to and beyond the operating frequency of the circuit so
that a signal race condition occurs. What happens? Does the noted frequency agree with
your estimate from the propagation delay?

The circuit will continue to add the multiplicand to itself as long as the clock continues to oscil-
late. In this ‘manual’ mode, you are responsible for counting how many clock cycles to provide to
implement a particular multiplication operation. In addition, the limited number of bits quickly
produces an overflow condition. We need to address both of these limitations.
☛
✡

✟
✠! Extend the word size of the accumulator to double precision (8 bits). You can do this quickly
by copying and pasting parts of the current circuit and making the proper connections. Verify
that you can now serially multiply two arbitrary 4-bit numbers by setting the multiplicand
via the four switches and clocking the circuit a number of times given by the multiplier.

Replace the manual clocking operation with an automatic one, using D-type latches connected as
a down counter, as shown in Fig.6.2. Note the additions that have been made to the 8-bit adder
circuit. The D-latches have active low preset and clear inputs. Switches set the 4-bit multiplier
value which is loaded into the counter on reset. The rising edges of the clock pulses decrement the
counter to zero and the circuit is then locked so that no further changes take place until a reset
pulse restarts the circuit and another multiplication is performed.



6.2. A SHIFT/ADD MULTIPLIER 25

Figure 6.2: A 4x4 bit summing multiplier

☛
✡

✟
✠! Modify your 8-bit adder circuit to match Fig.6.2 and verify its operation.

☛
✡

✟
✠! Describe using truth tables and timing diagrams the operation of the logic used to load the
counter with an initial value, and the logic used to lock the circuit so that a valid result can
be read.

☛
✡

✟
✠! Optional: Simplify this serial summing circuit. Hint: consider how the upper bits (bits 4–7) of
the multiplicand enter the 8-bit adder circuit, as well as what happens to the overflow pattern
of bits 0–3.

6.2 A shift/add multiplier

With some minor changes to our 8-bit adder circuit, a more efficient multiplication circuit can be
realized. Binary multiplication can be performed in a manner analogous to the well-known procedure
of decimal multiplication by hand, in which a series of shifts and additions — one for every digit
of the multiplier — yield the product. In binary multiplication, this procedure is simplified by the
fact that each binary digit has only two possible values, 0 and 1. To perform binary multiplication:

• initialize to zero both the accumulator and the loop counter;

• shift the contents of the accumulator, this is equivalent to a multiplication (or a division) by
2;

• for each bit of the multiplier in sequence: if the bit is a one, add the multiplicand to the
accumulator; otherwise skip this step, i.e. add zero;

• repeat the above steps until the loop counter has counted the number of bits in the word.
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Figure 6.3: A 4x4 bit shift/add multiplier

The product is stored in the accumulator.
Fig. 6.3 shows an implementation of a 4x4 multiplier that uses a shift/add algorithm. The

circuit is quite complex and we need to spend some time understanding its operation.
Let us begin by considering the operation of the circuit on reset. With a logic zero on the reset

line, the accumulator and shift counter latches are cleared and the clock circuit is disabled. One
input to the AND gates for bits 4–7 is set high so that the multiplier word can pass through the
AND gates to the B inputs of the adders for bits 4–7, where it is added to the current value in the
accumulator bits 4–7, which are zeros initially. Since bit 7 of the accumulator is zero, the AND
gates for bits 0–3 are forced into a low state, setting the outputs of adder bits 0–3 to zero.

When the reset line makes a low-to-high transition, the multiplier word is latched into bits 4–7
of the accumulator, while bits 0–3 are loaded with zeros. AND gate outputs for bits 4–7 are set to
zeros and the clock circuit is enabled.

Note that each bit in the accumulator is wired to the next-most-significant bit of the full adder
array. Hence a left shift operation is being performed every clock cycle. The multiplicand is always
added to the accumulator as a four-bit value, that is, the four most significant bits added are zero.
This is exploited to reduce the total gate count: the four bits of the multiplier value can be initially
loaded into the upper four bits of the accumulator without affecting the result as these bits will
have shifted out of the accumulator.

On every low-to-high transition of the clock, the multiplicand (or zero, if the appropriate mul-
tiplier bit is zero) is added to the accumulator value and stored in the accumulator latches. The
deciding condition is the state of bit 7 of the accumulator, which of course is reporting each of the
bits of the multiplier as it gets shifted out of the upper four bits of the accumulator — which had
been pre-loaded there by the reset. Note that the order in which the multiplier bits are processed
is MSB-to-LSB, as the accumulator contents are shifted left. At the same time, the shift counter
is incremented. In this case, use of an up counter is preferable since no preset logic is required for
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it. A down counter would have to be loaded with the count value and use some logic to detect a
zero output. When the shift counter reaches four, it sets the OR gate high, disabling further counts
until a reset re-initializes the circuit.
☛
✡

✟
✠! Simulate and verify the proper operation of the shift/add multiplier circuit. Consider some
improvements to the circuit. For example, you may want to terminate the multiplication
prematurely when one or both of the data words are zero.

? Since the multiplier value is set by switches, it is the accumulator value that is being left-
shifted. Choose an arbitrary pair of 4-bit values for the multiplicand and the multiplier, and
step through an entire multiplication cycle, recording the state of the accumulator after each
step. Identify what happens to the multiplier bits, initially at bits 4–7, through the cycle.

? An alternate strategy would select the multiplier bit to test (is it =1 or =0) using a multiplexer
driven by a down counter at its inputs. Sketch the relevant part of the circuit based on this
idea. Compare this strategy to the one used in the circuit of Fig. 6.3.

? Compare the summing and the shift/add circuit implementations. How does the number of
cycles required vary for the two circuits?

? Itemize the changes that you would need to make to the two circuits in order to perform an
8x8 multiplication resulting in a 16-bit product. How does the timing and gate count of the
circuits vary with the size of the data word?

6.3 An array multiplier

Consider Figure 6.4, a design for a 4-bit array multiplier. Here, the four cycles of shift/add oper-
ations have been piggybacked into several stages that perform the series of operations all at once,
combinatorially rather than sequentially.
☛
✡

✟
✠! Simulate and verify the proper operation of the array multiplier circuit.

? Does this circuit offer a better performance than the shift/add multiplier?

6.4 Look-up table multiplier

Another possibility, especially when performing complicated arithmetic calculations such as evalu-
ating the sine of an angle, is to use a lookup table. Here, a matrix of latches generically known as
storage memory, is loaded with all the possible combinations of output values for a series of two
input words. To implement a 4-bit multiplier, a memory array of 256 8-bit words is required. The
multiplier sets bits 0–3 of the memory address while the multiplicand sets to bits 4–7. The resulting
product on the output is simply the the data stored at the address selected by this combination of
two 4-bit inputs.

? Evaluate the advantages and disadvantages of using this approach.
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Figure 6.4: A 4x4 bit array multiplier
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Experiment 7

PICLab project board

7.1 Introduction

The vast majority of computers in the world do not run Windows, Unix or Linux. They do not
execute word processing or multimedia applications. These are the computers that run appliances
such as your television, VCR, microwave, and cell phone. These intelligent devices are known as
embedded processors, microcontrollers or peripheral interface controllers (PICs). They are used to
perform specific repetitive tasks that require low computational resources such as disk space or high
throughput video processors, and little or no human intervention.

In contrast to the typical number crunching desktop computer, these devices excel in their ability
to communicate with the world around them. To this end, a microcontroller IC not only implements
the basic arithmetic and logical functions of a typical microprocessor, but also includes a variety
of programmable input/output ports, hardware timers, analog-to-digital converters, and a fast and
efficient means of interrupting the execution of the microcontroller program to service a variety of
external or internal events.

A very capable example of a microcontroller is the Microchip PIC16F877. This 40-pin IC in-
cludes an 8-bit reduced instruction set (RISC) processor with 35 instructions, 8k words of re-writable
(flash) program memory, 512 bytes of scratchpad (RAM) memory and system registers, 256 bytes
of electrically-re-writable (EEPROM) data memory. There are 33 programmable input/output
pins, an 8-channel analog to digital converter (ADC), three event counters/timers, and a univer-
sal synchronous/asynchronous receiver/transmitter (USART) capable of communication at up to
1.25Mbits/s. With a 4 MHz clock oscillator, each instruction requires 1 µs to execute. The device
will operate at up to 20 MHz and execute five million instructions per second. This microcontroller
can be programmed in circuit with an in-circuit serial programmer (ICSP) or it can reprogram itself
by downloading a new program via the serial (COM) port of a PC or terminal.

Brock’s PICLab microcontroller project board is compatible with the Microchip PIC16F8xx se-
ries of ICs. This family includes two 40-pin versions, PIC16F874/877, and two 28-pin versions,
PIC16F873/876. These chips are functionally identical but differ in the number of input/output
pins, and the size of the program and data memory.

The PICLab project board includes a variety of peripheral circuits intended to simplify the
development of a microcontroller based project. Included are the circuits required to drive a 7
segment LED display, an interface to an LCD display, a keypad, a serial RS232 or USB interface,
relays and current drivers for the control of external devices and an in circuit programming interface.
There is also a small prototyping area for the inclusion of extra components. The PICLab can be
powered from a 9 V DC “wall wart”, a battery, or it can extract power from a computer’s USB
port.

A fully assembled PICLab board can operate as a stand-alone device. A five button expandable
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keypad can be used to input data and control the operation of the project board. For the display of
output data, a four digit seven-segment LED display can be utilized. Alternately, a more elaborate
LCD alphanumeric display of 2 lines of 16 characters each can be used. This “intelligent” display has
its own character memory and is programmed with a set of commands, much like the microcontroller
chip itself. This device might be used as a programmable thermostat, an alarm clock, or a battery
powered portable instrument such as a digital voltmeter.

A PICLab board also can operate as a remote device. Connected via a serial RS-232 port, or a
much faster USB port, a computer or terminal can accept and display the PICLab’s output data,
send the PICLab commands, and even change the program that the microcontroller is executing.
Connected to a modem (modulator/demodulator), the PICLab could send an alert via the telephone
to inform that the system needs attention. This device might be interfaced to several motion
detectors and used as an intrusion alarm system or other household monitoring device, or as a
remote data acquisition module.

The PICLab project board was designed at the Physics Department specifically as a convenient
platform for several experiments in this course. Later on you will learn the basics of Assembly
language programming, A/D and D/A conversion, and other aspects of computer assisted data
acquisition and control. In this experiment, you will build your own PICLab workstation, by
assembling (soldering) a project board of your own.

7.2 Pre-assembly review of parts and tools

Be sure to examine the schematics diagram of the project board, provided separately. You are not
expected to understand all of the details yet, however, you need to learn to recognize the overall
relationship between what is on the schematics, and its physical implementation on the project
board. The locations of various components on the printed circuit board (see below) are well
marked.

Examine, in particular, the keypad part of the circuit diagram. What should happen when you
press various normally open (N/O) momentary switches? Note how instead of multiple binary logic
lines to the PIC, multiple switches are connected to a single ADC input. Measuring the voltage on
this line, the PIC can determine which of the switches is pressed.

Figure 7.1: A PICLab printed circuit board, version 1.0, the component side

The project board is a high quality double sided printed circuit board. The conductive
traces on the fiberglass substrate are Pre-tinned for ease of soldering and both sides of the board
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are covered with a solder mask to minimize the possibility of solder connections between adjacent
traces. To simplify parts placement, the top or component side of the board is silk-screened with
the various part outlines and corresponding part IDs. All soldering is done on the opposite, or
bottom side of the board.

You will be using version 2.0 of the PICLab board, an updated of version 1.0 that no longer
supports the RS232 interface or 28-pin PICs but includes a prototyping area with several types of
surface-mount pads as well as a TLV431 voltage reference for the A/D converter. Space for two
user-configurable trimmer potentiometers is also included.

Table 7.1: PICLab board v2.0 basic parts list

# item part ID circuit function

1 100Ω resistor R9 Reset current limiting resistor
1 47KΩ resistor R10 Reset current limiting resistor
1 1N914 diode, glass D4 Reset blocking diode during programming
1 N/O mini switch SW1 Reset normally open reset switch
1 40 pin IC socket U5 PIC for PIC 16F877 controller
1 20.00MHz crystal Y1 PIC microcontroller oscillator crystal
2 22 pF capacitor C5,C6 PIC oscillator capacitors
1 0.1µF capacitor C7 PIC decoupling capacitor
1 10 pin header J3 PIC ICSP Program interface
1 40 pin IC socket U1,U2 Display for RT-DDC563DSA 7-segment displays
8 330Ω resistor RN1 Display segment current limiting resistors
4 2N4401 transistor Q1-Q4 Display 7-segment digit driver transistors
4 2.2KΩ resistor R2-R5 Display transistor base current limiting resistors
5 N/O mini switch SW2-SW6 Keypad normally open keypad switches
1 10KΩ resistor R17 Keypad voltage divider pullup resistor
1 4.7KΩ resistor R18 Keypad SW2 voltage divider resistor
1 8.2KΩ resistor R20 Keypad SW3 voltage divider resistor
1 13KΩ resistor R13 Keypad SW4 voltage divider resistor
1 22KΩ resistor R14 Keypad SW5 voltage divider resistor
1 47KΩ resistor R16 Keypad SW6 voltage divider resistor
1 500mA solid state fuse 0.5A PSU yellow disc circuit breaker
1 red LED LED PSU power on LED, longer lead is + anode
1 470Ω resistor R8 PSU power LED current limiting resistor
1 6.00MHz crystal Y2 USB USB interface oscillator crystal
1 0.033µF capacitor C10 USB decoupling capacitor
2 22 pF capacitor C11,C12 USB oscillator capacitors
1 0.01µF capacitor C13 USB decoupling capacitor
1 0.1µF capacitor C14 USB decoupling capacitor
2 27Ω resistor R11,R12 USB current limiting resistors
1 1.5KΩ resistor R15 USB pull-up resistor
1 470Ω resistor R19 USB resistor
1 USB B-type connector USB USB USB cable connector

Table 7.1 lists the components required to assemble a USB-powered printed-circuit board. These
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component are through-hole parts, inserted and then soldered at their proper location. The PIC
itself, and the two 7-segment LED displays are socketed: the components are inserted into the
socket in the final step of the assembly. Several other components, such as a voltage regulator and
power jack, are required if the board needs more than 250mA of current to operate. In this case, a
battery or AC adapter can be used.

Table 7.2: PICLab board v2.0 optional on-board power supply parts list

# item part ID circuit function

1 1.0A solid state fuse 1A Power yellow disc circuit breaker
1 100µF/10V capacitor C1 Power output filter capacitor
1 100µF/25V capacitor C2 Power input filter capacitor
1 1N4004 D1 Power polarity reversal diode
1 3 pin header Power USB/VDC power select
1 7805 7805 Power 5V regulator
1 Power jack 2.1mm J1 Power external 9VDC voltage input

Soldering

You will be using a variable temperature soldering station for all your soldering. Turn on the power
and set the temperature so that the green LEDs light up but not the red ones. The soldering station
may take a minute or two to reach the selected temperature. While you are waiting, moisten the
tip-cleaning sponge.

The reliability of your project depends greatly on the quality of your solder connections. Please
review the reference materials on soldering techniques provided on the course web site; they contain
illustrations that may give you a good idea of what is expected. The following guidelines are a brief
summary.

• Each time that you make a solder joint, begin by cleaning the tip of the soldering iron with
the moistened sponge, then “tin” the iron by applying a small amount of solder to the tip.
This procedure will result in better transfer of heat from the iron to the parts to be soldered.

• Apply the tip of the iron where the component lead and the PC board copper trace meet so
that both are heated at the same time. Apply the solder to the side opposite the tip. Do not
touch the solder with the iron tip. When both the lead and the trace are sufficiently hot,
the solder will melt and form a connection. This may take one or two seconds. Apply only
sufficient solder to cover the joint.

• Withdraw the tip without disturbing the solder joint and let the joint cool. A good joint will
be smooth and shiny and show a visibly solid connection between the copper trace and the
component lead. When insufficient heat is applied to a joint, the solder will fail to flow around
the connection and will bead and form globules, resulting in a “dry” joint. To correct this,
reheat the joint until the solder melts, apply a touch more solder and let cool.

• When soldering a two lead component such as a resistor or diode, insert the component into
the PC board so that it rests flush with the board’s surface, then slightly bend the leads
outward where they meet the board. Solder both leads and when cooled snip off the excess
lead where it meets the solder joint.
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• When soldering a component with several connections such as an IC socket, insert the com-
ponent flush with the board and hold it in place as you solder the corner pins to the board. If
the socket is not properly seated, apply some pressure to the raised region and heat the solder
joint. After you are satisfied that the part is flush with the board, solder the remaining pins.

7.3 Assembly of a PICLab project board

The parts IDs are laid out on the board as text on paper, with the lowest index at the top left
corner and ID numbers progressing in rows to the lower right corner of the board. To attach the
various components to the printed circuit board, adhere to the following assembly sequence. Check
off each step as it is completed. Note that many components are polarized and require to be placed
on the board in a particular orientation. Follow the philosophy of checking component placement
twice and soldering once. The removal and replacement of improperly installed components can be
a tedious, time consuming process and if improperly carried out, can lead to board damage.

Note: before proceeding with the assembly, thoroughly read the following
instructions in their entirety.

Before soldering any components to the project board, familiarize yourself with the proper
location and orientation of all the components. Verify that you are installing the correct parts as
specified in Table 7.1. If you are uncertain as to the value of a particular resistor, measure it with
a multimeter. As you go along, you may find it useful to mark off the steps already completed.
☛
✡

✟
✠! Locate the 100 Ω reset circuit resistor R9 and verify the value with an Ohmmeter. Bend the
leads at a right angle where they meet the body of the resistor. You can do this by applying
pressure to the end of the resistor body with the tip of your finger. Be sure to make a tight
angle otherwise the part will not fit into the board. Avoid bending the leads many times as
they will likely break off. With the PC board component side up, install resistor R9 flush
with the PC board, then bend the leads outward to hold the part in place. Turn over the
PC board and solder the resistor leads. Snip the excess lead lengths after the solder joint has
cooled.

☛
✡

✟
✠! Repeat the procedure to install the 47 KΩ reset circuit resistor R10.

☛
✡

✟
✠! Install diode D4. The diode has a glass body with a thin black band at one end to indicate
the negative cathode. The band should be oriented in the same direction as the part outline
on the PC board. Solder and trim the leads.

☛
✡

✟
✠! Install the reset switch SW1. The pins have an S shaped bend designed to hold the part in
place during the automated assembly process. You will need to carefully straighten the pins
of all the switches with pliers so that they can be inserted into the PICLab board. Be sure
that the switch is flush with the PC board, then solder it in place.

☛
✡

✟
✠! Install the 20 MHz PIC oscillator crystal Y1 and oscillator capacitors C5 and C6.

☛
✡

✟
✠! Install the power LED, noting that the negative side of the diode is identified by the notch at
the base, the LED current-limiting resistor R8 and 500mA solid-state fuse, a small flat yellow
disk, at the location marked ’Fuses, 0.5A’.

☛
✡

✟
✠! A three-pin jumper, next to the fuse, can be installed to select the source pf power to the
board, either from the USB connection (USB) or from an on-board power supply (VDC). To
power the board only from the USB interface, connect a piece of wire from the middle hole
to the end hole labeled USB.



34 EXPERIMENT 7. PICLAB PROJECT BOARD

☛
✡

✟
✠! The location RN1 for the display segment current limiting resistors can accept a resistor
network, an IC that integrates eight resistors in one package, or discrete resistors. You will
use eight discrete 330 Ω resistors for this purpose. Install side by side and solder the eight
resistors at location RN1.

☛
✡

✟
✠! Install the four 2.2 KΩ resistors R2 to R5 that limit the base current of the transistors Q1 to
Q4.

☛
✡

✟
✠! The 2N4401 (or 2N3904) transistors Q1 to Q4 must be properly nstalled. Hold the transistor
upright with the part number facing you and the three legs facing downward. From left to
right, the legs are identified as E-B-C. The placement of these legs should conform with the
markings on the PC board. Generally, the three legs are clearly marked on the transistor
body. Add these transistors to the PC board. If you are not sure as to the proper orientation
of the transistors, ask the instructor.

☛
✡

✟
✠! Install the five keypad switches SW2 to SW6.

☛
✡

✟
✠! Install keypad resistors R17, R13, R14, R16, R18, R20. Be careful to place these resistors at
their proper location, otherwise the keypad will not function properly. Check their resistance
with an Ohmmeter. The reading should be within a couple of percent of the required value.

☛
✡

✟
✠! With the project board component side up, insert a 40-pin IC socket for the PIC controller
at location U5 on the board. One end of an IC socket is usually indexed with a cutout or
some other identifying mark to properly orient the removable IC in the socket. Be sure that
the socket orientation corresponds with the indexed outline on the board.

☛
✡

✟
✠! With the board solder side up and the IC socket flush with the surface of the board, solder
the four corner pins to the board. Check that the socket is properly seated. If it is not, gently
apply pressure to the socket and apply some heat to the pin to melt the solder and seat the
socket. Solder the remaining pins, being careful to not apply too much solder and short out
adjacent pins.

☛
✡

✟
✠! Repeat the above procedure to mount the 40-pin socket for the seven-segment displays U1
and U2. Here we are using a socket to allow for the displays to be removable. Orient this IC
socket with the index mark next to pin 1 of U1.

☛
✡

✟
✠! Locate the 10-pin header J3 required for in-circuit serial programming. The location is labeled
“ICSP Program”. Insert the shorter end of the header strip flush with the board and solder
it in place.

☛
✡

✟
✠! The FT232BM USB interface chip has been pre-soldered to the board. Typically, for proper
installation, a surface-mount component requires a fine-tipped soldering iron and very thin
solder as well as the aid of a magnifier. Install the other USB-related components: the resistors
R11, R12, R15 and R19, then the capacitors C7 and C10-C14, and finally the 6 MHz crystal
Y2, making sure that the metal case does not contact the pads of C10.

☛
✡

✟
✠! Install the silver USB-B connector by gently pressing the jack into the mounting holes while
being careful to make sure that the four small signal wires are properly inserted and protruding
from the other side of the board.

Carefully check over the entire board. You can use the illuminated magnifier to verify that all of the
solder joints are of good quality and that the components are installed at the correct locations and
in the proper orientation. Fig.7.2 shows you what your completed PICLab project board should
look like.
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Figure 7.2: A completely assembled PICLab project board

7.4 PICLab basic functionality tests

Before putting your project board to a practical use, you must verify that all of the board’s com-
ponents are functioning as expected. To begin with, always establish that the correct voltage is
present and distributed throughout the board.

☛
✡

✟
✠! Have the instructor check your board before you perform the following tests.

☛
✡

✟
✠! Connect a USB cable from the board to the host computer. The LED should light up. If it
does not, the LED may have been inserted backwards. With a voltmeter, verify that there is
5V DC at the Vdd pin of the PIC expansion bus.

☛
✡

✟
✠! Test the reset circuit. This circuit sets the voltage at the MCLR pin of the controller. A low
voltage at this pin resets the processor while a level of +5V puts the processor in run mode.
With the Reset switch released, there should be +5V DC present at the MCLR pin of JP8.
Press the Reset switch SW1. The voltage should drop to OV. Release the switch to return
the reset line to +5V.

☛
✡

✟
✠! If the above tests have been successful, remove power from the project board. Ground yourself
by touching the metal case of an instrument, then install the PIC microcontroller chip on the
board. Be sure to properly orient the chip in the IC socket. Without touching the pins,
carefully line up the PIC chip with the socket so that all the pins are lined up with the socket
below. Gently and evenly press the chip into the socket, being sure that none of the pins
are out of alignment and being bent, until it is fully seated in the socket. If the chip resists
installation, see the instructor.

☛
✡

✟
✠! Install the two dual 7-segment display ICs. Note the correct orientation. The decimal points
of the display should be at the bottom of the display, toward the PIC. Install the first display
IC flush with the right side of the socket. The second display is installed flush with the first.
The two leftmost pins of the socket will remain empty. That is to say, the displays should
appear offset slightly to the right on the socket.

☛
✡

✟
✠! Noting the correct orientation, install the MAX232 serial interface chip into the 16-pin socket
following the directions outlined above.
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☛
✡

✟
✠! Reconnect power to the project board. If the PIC circuit is functioning properly, the PICLab
will test the 7-segment display by displaying the number 8888. The PICLab will then blank
the display and wait for user input. Press the Reset button. The PICLab should once again
display 8888, then blank the display. If this happens, the PICLab microcontroller and display
circuits are functioning as expected.

The keypad now needs to be tested. The state of the keypad is encoded as specific voltage levels
at ADC input channel 0. The switches are organized as follows:

SW2 = ’2’

SW3 = ’3’ SW4 = ’4’ SW5 = ’5’ SW2 + SW3 = ’1’

SW6 = ’6’ none = ’7’

The keypad test routine verifies that the keypad resistors were correctly installed by displaying
the switch number on the LED display when a switch is pressed. The following procedure causes
PICLab to enter a diagnostic mode that displays keypad data.
☛
✡

✟
✠! Press and hold one of the keypad switches. Press and release the reset button. The num-
ber 8888 should be displayed, followed by a number that corresponds to the keypad button
currently pressed.

☛
✡

✟
✠! Release the switch. The number ’7’ should appear. Press each of the keypad switches in
turn and verify that the number corresponding to the switch is displayed. If the number
output does not match the switch pressed, an incorrectly valued resistor has been installed.
Simultaneously press SW2 and SW3; the digit ’1’ should be displayed. Press the reset button
to exit the diagnostic routine.

Now you can test the operation of the PICLab USB serial interface. The PICLab board is
controlled and programmed via a connection to the picl software running on a host computer.
picl can automatically detect the presence of the PICLab board. More on this later...

☛
✡

✟
✠! With the PICLab board connected to the host computer, login to your workstation and type
’picl’ at the command prompt. The picl software should start by opening a ’PICL’ window on
your desktop, as well as a ’PIC simulator’ window. At the top left corner of the ’PICL’ window,
an icon displaying a single plug shows that the PICLab board is not currently communicating
with the picl software and picl software is running as a PICLab simulator. In this mode,
your programs are executed on a virtual duplicate of the PICLab hardware.

☛
✡

✟
✠! Check that the port is set to ’/dev/ttyUSB0’. Click on the connection icon; it should change
to a connected pair of plugs and a message ’Connected to PICLab at 57600 Baud’ should be
displayed in the status box. The ’PIC simulator’ window disappears.

☛
✡

✟
✠! From the ’Options’ menu, click the ’Reset PIC’ button. The PICLab board should momen-
tarily display the ’8888’ and then blank, just as if you had pressed the Reset button on the
board.

Once all of the above tests have been successfully carried out and all problems have been resolved,
your PICLab is ready for use.
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Experiment 8

PICLab programming

Brock’s own PICLab is the development board package that will be used in several experiments in
this lab. The microcontroller used in PICLab is the Microchip PIC16F877-20 or PIC16F887. With
a 20-MHz oscillator, most instructions require 200 ns (4 clock cycles) to execute. In addition to
the PIC itself, the PICLab board contains power supply, display, and interface circuits necessary to
communicate with the board via a USB port of a Linux workstation or PC.

PICLab bootloader

A small bootstrap utility program has been pre-loaded into the memory of your PICLab, and a
computer program called picl has been written to provide transparent communications with the
PICLab board.

picl IDE

picl is an Integrated Development Environment of the PICLab board. It allows you to write
assembler programs, compile and download them to the memory of the PIC, and to examine the
state of the PIC memory or registers during the debugging process. picl can also provide a real-time
text and graphical display of data sent by your running program.

picl also includes a PICLab simulator. Implemented in software is most of the functionality of
PICLab, including the internal hardware of the microcontroller and the external hardware elements
such as the LED display, keypad, LCD display and serial port. The user subroutines that are
preloaded on PICLab are also simulated in software. Hence, your code developed with the simulator
should run as expected on the real PICLab.

With the simulator you can easily single step through your code and monitor the outcome of
each instruction. Further, Virtual Pic allows you to view how an instruction is executed inside the
PIC and the path that your data follows on every cycle of the PIC clock.

You can easily switch execution of your code between the simulator and the PICLab board by
making or breaking the PICLab connection.

PICLab schematic

Fig. 8.1 provides an overall block diagram of the PICLab board, showing the essential connections
between the PIC itself and the other components of the PICLab board. Together with the picl

help menus and the PIC reference documentation (see the References section of the class website)
this information should be sufficient for you to get your PICs to work.
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Figure 8.1: Block diagram of a PICLab board
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Connecting PICLab

By default, picl enters the PIC Simulator mode on start-up with the ’Connect’ icon showing a
single plug meaning that PICLab is not currently connected to PICL. With your PICLab board
connected to the USB port of your Linux workstation and the port set to /dev/piclab, click the
connection icon. The icon changes to two connected plugs, a message ’Connected to PICLab at
57600 baud” appears in the status box, and picl is ready to communicate with PICLab. Check
the ’Auto connect’ box in the ’Settings’ menu to detect and connect to PICLab on start-up. 1

PICLab interface

On your Linux workstation, invoke the graphical user interface to PICLab by typing:

picl &

Figure 8.2: picl application window, connected to PICLab

Fig. 8.2 shows what picl window should look like on your screen. Typically, you enter one or

more opcodes in the entry window and click Build . If the assembly completes without errors,
PICLab loads the given instruction(s) to the Flash program memory and executes them.2 This code
will not erase if the PIC is reset or the power is turned off. You can execute the program currently
stored in the PIC memory by clicking the Run button.

As the program runs, PICLab sends a variety of data back to the user. You can open several

windows in the View menu to keep track of how the values in the PIC registers and memory
change as a result of your instructions being executed.

Click the ? button for help on the PIC opcodes, assembler directive commands and a list of
the utility subroutines pre-written for you to use in your programs. Click ’Exit’ in the ’File’ menui
when done, your working environment will be saved.

1To program PICLab from your laptop or PC, you need picl and the Tcl/Tk 8.4 interpreter installed; it is freely
available for all platforms at www.activestate.com. You may also need to specify the connection: e.g. /dev/piclab
or /dev/ttyUSBn under Linux or COMn under Windows, where n is the desired port. Under Windows, a USB serial
device is identified as a COM port.

2By default, the loader chooses 0x0400 as the starting address of the user program, out of the total program
address space of PIC of 0x0000–0x1FFF; the loader itself is using 0x0000–0x03FF.
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8.1 Assembler instructions and code development

You are now ready to begin programming. As you progress through the exercises, be sure to
understand the function of each instruction (see the help menu) and the overall logic of the program
code. Familiarity with the PIC instruction set and with these basic technoques of interacting with
PICLab will make programming the PICLab board a more pleasurable experience.
☛
✡

✟
✠! Start the picl application. Connect to PICLab. In the following steps, the comments shown
in brackets do not need to be entered; the text can be formatted using the tab key.

Begin by sending to the PIC an instruction to turn on bit 7 of its Port D. This pin is connected
to the decimal point of the seven-segment displays. In the entry window, input the following
opcode:

bsf PORTD,7 ; set bit 7 of file register PORTD

Click the Build button. The LED attached to bit 7 of Port D on the PIC should turn on.
Modify the above instruction to read as follows:

bcf PORTD,7 ; clear bit 7 of file register PORTD

Clicking Build should turn off the LED.
☛
✡

✟
✠! You will now implement a loop. Enter the following code:

begin bsf PORTD,7 ; set bit 7 of file register PORTD

bcf PORTD,7 ; clear bit 7 of file register PORTD

goto begin ; branch to label called "begin"

Since the program is toggling the Port D bit on and off a couple of times every microsecond,
the LED should appear continuously lit, but somewhat dimmer. The PICLab board is now
executing an infinite loop and will not respond to commands.

Connect an oscilloscope to pin 7 of PORTD on the expansion connector. Sketch and label the
output waveform.

? Explain the timing in terms of the PIC instruction execution times. Is the timing in agreement
with your expectations?

☛
✡

✟
✠! Press the Reset button on the PICLab board to interrupt the program and regain control
of the hardware.

You can slow down the LED flashing rate by introducing a long, in PIC terms, delay after
each of the bit operations. A utility subroutine called Wait is available to implement such a
delay. The W register is loaded with a delay value to be passed to the subroutine. Try the
following code:

begin bsf PORTD,7 ; set bit 7 of file register PORTD

movlw 250 ; pass delay count to Wait subroutine

call Wait ; execute a delay of 250*150us

bcf PORTD,7 ; clear bit 7 of file register PORTD

movlw 250 ; delay value for Wait subroutine

call Wait ; execute a delay of 250*150us

goto begin ; branch to label called "begin"

The flashing of the LED is now clearly noticeable. Vary the value in the movlw instructions
to observe how the flashing rate varies.
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8.2 Loops, conditional branching, and calls to subroutines

The next step in our exploration of PIC programming is to add some flow control to the program’s
execution. One possibility is to have the algorithm flash the LED a set number of times, then
terminate and return control to the user. You can use labels to make the program more readable.
The equ directive assigns a value to a label. The following code will flash the LED COUNT times
and terminate.

; Flash.asm: Program to flash LED on and off a specified number of times

COUNT_REG equ 0x20 ; use register 0x20 to count, 0..1F are reserved

COUNT equ 0x10 ; count value to be put into the count register

DELAY equ 0xff ; "Wait" this many tics, ~150us ea

movlw COUNT ; put a count value into the accumulator

movwf COUNT_REG ; put accumulator into the count register

flash bsf PORTD,7 ; turn on LED segment

movlw DELAY ; pass DELAY count to function Wait

call Wait

bcf PORTD,7 ; turn off LED segment

movlw DELAY ; pass DELAY count to function Wait

call Wait

decfsz COUNT_REG ; decrement count, skip over the next...

goto flash ; ...instruction when file register=0

Another way to terminate a loop is to check for a certain condition and run until it is satisfied, such
as when the user presses a button. The Getkey subroutine reads the keypad and returns in W a
value of 2-6 if a button is pressed, otherwise a value of 7 is returned. The STATUS register maintains
the state of several flags that can be tested to alter the program flow. The zero flag Z is set when
the result of an operation is zero, and is cleared otherwise.
☛
✡

✟
✠! Document the following code and test the algorithm by running the program. What does the
program do? Does the program behave as expected? Consult the help menu (?) to obtain
more information on the PIC opcodes and utility subroutines that are available for you to
use.

; Showkey.asm: Program to ...........................................

KEYSAVE equ 0x20 ; .......................................

clrf PORTD ; .......................................

readkey call Getkey ; .......................................

movwf KEYSAVE ; .......................................

sublw 7 ; .......................................

btfsc STATUS,Z ; .......................................

goto readkey ; .......................................

movf KEYSAVE,W ; .......................................

movwf PORTD ; .......................................

sublw 2 ; .......................................

btfss STATUS,Z ; .......................................

goto readkey ; .......................................

return ; required if code follows main program .
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In the above example, a simple return from a subroutine (instruction return) is being used. In
the picl convention, the entire user code is assumed to be a subroutine of the PICLab loader, and
so at the very end of the code, an automatic return is always inserted for you. This is why your
one-line “programs” like bsf PORTD 7 worked just fine even though they did not have a return
operation. However, you must insert an explicit return at the end of every subroutine that you
yourself write, and at the end of your main program if any code follows it.

An extra return somewhere in the middle of the code can also be used as a simple debugging
tool. Upon encountering such a “premature” return, the program will terminate, pass the control
to the PICLab loader, and it in turn will update all of the open windows of picl with the current
values of various registers, memory contents, etc. You will then be able to examine the current
status of your PIC and decide if the code you wrote is doing exactly what you intended it to do.

You may also execute a call Break instruction to update picl with the recent values from the
PIC, and to continue program execution. This subroutine is not a part of the PIC instruction set,
but is made available through the utility loader function set. You can use the ! symbol in a blank
line as a short form for call Break.

Note: The call Break and ! instructions may cause unexpected program behaviour when
placed in your code following a conditional branch instruction or as part of a jump table.

In addition to the simple returns, the PIC instruction set has other flow control instructions that
allow one to take some programming shortcuts. For example, addwf PCL F instruction increments
the current program counter (PC) by a value stored in the W register before proceeding to the
instruction stored at that location. In this way, an indexed goto statement is implemented. The
retlw is a combined load-and-return instruction; it first loads the W register with a literal value and
then exits by executing a return-from-subroutine instruction.

? You can use a lookup table to convert binary data into bit patterns that corresponds to
a decimal digit on the seven-segment display. Determine from the PICLab schematic the
mapping of PORTD pins to the display segments and write down the bit patterns that represent
decimal digits 0 through 7 on the seven-segment display.

☛
✡

✟
✠! Append the following code to the above program (that is why you needed the explicit return
at the end of it) and convert your keypad data by calling the Convert subroutine at an
appropriate time in your program. Explain the program flow of this code. What is the
purpose of the andlw instruction?

Convert andlw 7 ; .......................................

addwf PCL,F ; .......................................

retlw %00111111 ; seven-segment bit pattern for digit "0"

retlw %________ ; .......................................

retlw %________ ; .......................................

retlw %________ ; .......................................

retlw %________ ; .......................................

retlw %________ ; .......................................

retlw %________ ; .......................................

retlw %________ ; .......................................

Each seven-segment display consists of eight LEDs connected together at the cathode (-). The
PORTD pins connect to the individual LED anodes (+). With the common cathode pins of each
display connected to ground, it would require 32 bits to control the four displays of the PICLab
board.
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A more efficient use of resources employs the technique of time multiplexing to generate an
output on the four displays. Here, the digits are displayed sequentially with only one of the four
digits enabled at anytime. If the switching between digits is sufficiently rapid, the persistence of
the human eye creates the illusion that all the digits are on at the same time.

Four output pins (PORTB pins 0–3) control the voltage at the display cathodes via current-driving
transistors. The corresponding anodes of the four displays are connected in parallel (refer to the
PICLab schematic, Fig. 8.1). A software loop then enables each of the displays in turn while the
bit pattern corresponding to that digit is presented on the PORTD pins. With multiplexing, the pin
count has been reduced to 12 from 32, a saving of 20 input/output pins.

☛
✡

✟
✠! Develop a flowchart to multiplex four different digits of data on the PICLab display. Convert
the flowchart to PIC instructions and test your code.

☛
✡

✟
✠! Vary the loop timing to determine the minimum refresh rate necessary to prevent the display
from flickering.

8.3 Macros and subroutines

A Macro is a group of instructions that are referred to as a single new instruction. During assembly,
every time a Macro instruction is encountered, the original group of instructions is assembled into
the program.

A subroutine consists of a group of instructions within the user program that begin with a
subroutine name tt label and end with a return statement. A call label instruction branches
the program to label and executes the subroutine code until the return instruction restores the
program flow to the instruction following the call.

The following code incorporates some practical programming techniques to implement a display
multiplexing scheme. A macro definition is shown as well as an efficient method of implementing a
jump table to select one of several branch possibilities.

☛
✡

✟
✠! Analyse and document the code; explain clearly the functionality of the subroutines, then
compare the functionality of this program with your version. You may want to save your code
into a file (say, Show4.asm) before you build and run it. Be sure to add some of your own
code to provide meaningful values to 7seg 0 ... 7seg 3, then run the program.

; ..... Show4.asm: multiplex the four-digit seven-segment display ........

7seg_0 equ 0x20 ; least significant display digit .......

7seg_1 equ 0x21

7seg_2 equ 0x22

7seg_3 equ 0x23 ; most significant display digit ........

7seg_ptr equ 0x24 ; pointer to current digit displayed.....

Move macro src,dst ; register to register move, modifies W

movf src,W ; the macro defines a new Move

movwf dst ; instruction that is not available

endm ; as part of the PIC instruction set

; your code goes here, with a call to Scan7seg
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return

Scan7seg ; .......................................

incf 7seg_ptr,F ; .......................................

movlw 3 ; .......................................

andwf 7seg_ptr,F ; .......................................

movlw 0xf0 ; .......................................

andwf PORTB,F ; .......................................

call Show7seg ; .......................................

iorwf PORTB,F ; .......................................

return ; .......................................

Show7seg ; .......................................

movf 7seg_ptr,W ; .......................................

addwf PCL,F ; .......................................

goto Show0 ; .......................................

goto Show1 ; .......................................

goto Show2 ; .......................................

goto Show3 ; .......................................

Show0 Move 7seg_0,PORTD ; .......................................

retlw %00000001 ; bit 0 selects display 0, active high ..

Show1 Move 7seg_1,PORTD ; .......................................

retlw %00000010 ; .......................................

Show2 Move 7seg_2,PORTD ; .......................................

retlw %00000100 ; .......................................

Show3 Move 7seg_3,PORTD ; .......................................

retlw %00001000 ; .......................................

The bits of a port are generally assigned various functions so you must take care to modify only the
pertinent bits when using byte size instructions. This masking process requires reading the current
port value, modifying only specific bits, then writing back the data to the port. Bit manipulation
instructions are not useful when the bit to be modified varies, as in the selection of the digit to be
displayed.

8.4 Interrupts

You will note that depending on the code that you added, the above program will initialize the digit
values and display them indefinitely, or you will have implemented a loop that modifies the digit
variables and calls the Scan7seg subroutine. In the first case, the PIC is fully occupied scanning
the display and can perform no other function; in the second case the refresh rate is determined by
repeated calls to a subroutine.

The ideal way to execute a periodic sequence of events is to use an interrupt. A hardware timer
on the PIC interrupts the program flow every 5ms and executes a call to a user interrupt service
routine (ISR). The ISR code runs in the background independently of the user program. You can,
with an ISR, update the display variables or wait for input while the Scan7seg ISR scans the display
at a constant rate. Note that the execution time of the ISR must be less than the time between
interrupts or your program will hang. With this in mind, your ISR is disabled when the PIC is
reset.

To define an interrupt service subroutine that will be remembered by the PIC until redefined,
add the #UserISRon directive following your ISR subroutine code:
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#UserISRon Scan7seg ;set Scan7seg as user ISR and enable interrupt

The ISR routine will only execute while your program is running. To test some ISR code, you
can program a one-line instruction (e.g. here goto here) to execute an infinite loop; the ISR
routine will execute until the PICLab board is reset. The user ISR routine can be turned on and
off from within your program with the following instructions:

bcf Flags,USERISR ;reset user ISR flag, disable user ISR

bsf Flags,USERISR ;set user ISR flag, enable user ISR

8.5 Analog-to-digital conversion

The PIC can sample one of eight input channels with a 10-bit resolution. To perform an analog-to-
digital conversion (ADC), an input channel is selected. A delay follows, to allow the input voltage
to be sampled. A start of conversion flag is set to begin the ADC and another flag is set when the
conversion is completed. The data is then ready to be used.

The ReadAD subroutine performs all of the above tasks. Load the W register with the number of
the input channel and call the routine. After 50µs, the lower eight bits of data are returned in the
WL file register and the two most significant bits are in WH. The Getkey routine reads A/D channel 0
and uses the three most significant bits of the converted value to determine which key was pressed.

☛
✡

✟
✠! picl has predefined pointers to the 7-segment LED displays called Digit0..Digit3, a subrou-
tine equivalent to Scan7seg called Refresh and a routine LedTable, similar to your Convert
routine, that converts a value 0-0x0F contained in W to the 7-segment pattern for the corre-
sponding hex digit. For convenience and to make your code more compact, use these as part
of your programs.

The following code reads a 10-bit value from the A/D converter channel connected to the
keypad and displays it as three hexadecimal digits on the LED display. Complete the missing
code and verify that the program functions as expected:

#UserISRon Refresh ;define LED display scanning routine as user ISR

bsf Flags,USERISR ;enable execution of user interrupt routine

begin ..... ..... ;select the keypad channel

..... ..... ;read 10-bit A/D value, store in WH:WL

..... ..... ;place lower 8 bits of 10-bit A/D value in W

..... ..... ;set bits 4-7 to zero, bits 0-3 are A/D bits 0-3

call LedTable ;convert value in W to 7-segment hex digit

movwf Digit0 ;display hex digit for A/D bits 0-3

swapf WL,W ;place swapped nibbles (hex digits) from WL into W

..... ..... ;set bits 4-7 to zero, bits 0-3 are A/D bits 4-7

..... ..... ;convert value in W to 7-segment hex digit

..... ..... ;display hex digit for A/D bits 4-7

..... ..... ;place upper 2 bits of 10-bit A/D value in W

..... ..... ;convert value in W to 7-segment hex digit

..... ..... ;display hex digit for A/D bits 8-9

..... ..... ;loop code
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8.6 Utility subroutines and data output

There are several pre-loaded subroutines available for use as part of your programs. Click on the
help menu ’?’, and browse the ’Routines’ subdirectories. You should become familiar with these
routines; they are bug-free and will make your programming task much easier.

Several of these routines make the output and conversion of data a simple matter. For example,
the Bin2BCD routine takes the 16-bit binary value stored in the file registers WH and WL and converts
it to a five-digit signed or unsigned decimal value stored in registers Dec0-Dec4. The BCD2LED
routine converts and outputs this result to the 7-segment display. Alternately, the contents of
Dec0-Dec4 can be sent to the ’PICLab output’ window in picl as an ASCII 3 string by calling the
BCD2TCL routine, or to the LCD display by calling the BCD2LCD routine. The PICLab LCD display
uses the ASCII character set. These routines require parameters to be set prior to execution.

To send to picl a single ASCII character stored in W, use the TxByte routine. To send a value
in W in the range of 0-9 as the corresponding ASCII decimal character, use the TxDigit routine.
The Hex2TCL routine outputs the value in W as a 2-character hexadecimal string, while the Dec2TCL
routine outputs the value in W in the valid range of 0-99 as a 2-character decimal string.

The characters sent to picl are stored in a buffer until a newline character ASCII=0x0A, is
received. This is handy when several columns of data need to be sent; they will be displayed on the
same line until terminated by a newline character. To separate your data values with a space, send
the ’space’ character, ASCII=0x20.

The following code segment outputs the value in WH:WL as a decimal string to the PICLab output
window:

call Bin2BCD ;convert 16-bit value in WH:WL to decimal string

movlw 6 ;set field width for BCD2TCL to 6 characters

call BCD2TCL ;send string to TCL buffer

movlw ’\n ;load W register with ASCII newline character

call TxByte ;send character, flush buffer to display contents

For the following exercises, begin by sketching a flowchart of the logical steps required to perform
the given task, then convert each step to one or more PIC instructions that will define your program.
Be sure to thoroughly document your code. Test your code initially on the PIC simulator, then
execute your program on PICLab:

1. write a program that reads the keypad channel and displays the result as a decimal value 0-
1023 on the 7-segment LED display. The value should change as the various keypad switches
are pressed;

2. write a program that outputs three pairs of coordinate points (1,2), (2,4), (3,8) to the PICLab
output window. The data should appear as an array of three rows by two columns. Click the

Graph button to generate a Gnuplot graph of your data. Check the Lines box to interpolate

the data with line segments;

3. write programs that implement in software the summing and shift/add algorithms used to
multiply two 4-bit numbers that were implemented in hardware as part of Experiment 6.
Begin by reviewing the arithmetic instructions available to the PIC and their effect on the
carry C and zero Z flags contained in the STATUS register.

3ASCII refers to the American Standard Code for Information Interchange, where an 8-bit value is used to
represent the character set of alphanumeric characters a-z, A-Z, 0-9 as well as other symbols typically found on a
keyboard, such as ?, +, !. Coded in the range of ASCII=0-0x1F, are non-printed control characters.
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Experiment 9

PICLab data acquisition project

This PIC project is meant as a chance for you to put all your skills in digital/analog electronics,
PIC programming/interfacing and practical problem solving to use and to build a useful device of
your own. Your project will consist of the following steps:

1. research:
the research cycle involves a preliminary exploration of possible project ideas where the hard-
ware and software implementation options and perceived design difficulties are considered.
Analyse the evolutionary steps involved in the design process that need to be successively
fulfilled to make your project work; the choice of input sensors, the interpretation and pro-
cessing of the input data, and the output of results or control signals that are required to give
your design its planned functionality. Consider also the enhancements that, time permitting,
could be made to your design to increase the usefulness or capabilities of your project;

2. proposal:
the proposal consists of a written and oral presentation of the tentative PIC design project
that you have selected. The proposal outlines what you are planning on doing, how you are
planning to do it, and the difficulties that you expect to overcome. It should be the end result
of some significant amount of time spent thinking about the practical issues involved in the
implementation of the project, the analysis of several possible alternative hardware/software
solutions to the problem, specifically in terms of the merits of the different approaches;

3. development:
this involves the experimental process of attempting and achieving the milestones set out
in the design proposal, and will likely involve a mixture of the assembly of mechanical and
electronic components as well as software programming. A part of this process involves the
resolution of problems, expected and unexpected, that arise during the development of any
prototype system. A detailed, dated documentation of the development process must be
preserved. This is a record of the steps undertaken to accomplish the end result, as well as
the design choices that were attempted but proved to be unsuccessful;

4. presentation:
as a final step, you will make an oral presentation consisting of a demonstration of the working
project and a description of its operation. The presentation concludes with an assessment of
your final result in terms of the goals set out in the project proposal. You should have available
for submission a printed copy of your design records as well as a user manual that describes
the device opeartion and includes hardware schematics and software code.

Below are several simple ideas, you are welcome to suggest a similar project of your own for approval
by the instructor.
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9.1 A PID temperature controller

One of the simple ways of controlling semi-continuously the state of a system is through the ad-
justment of the ratio of on/off times. For example, if the temperature of a reservoir is below the
target temperature, we turn the heater on, and if it exceeds the target temperature, we turn the
heater off. A temperature sensor and a TTL relay acting as the power switch for the heater under
the control of a microprocessor is enough to implement a simple temperature controller. However,
a truly intelligent controller would implement the so-called PID (Proportional-Integral-Derivative)
control algorithm, whereby the temperature difference with the target temperature (P), the time
integral of temperature (I) and the time rate of change of temperature (D) are all monitored and
the output is controlled by all three, with varying-weight contributions. The reasoning is simple:
a purely Proportional control always overshoots the target and, depending on the thermal inertia
of the heater, may end up always oscillating about the target temperature. Including the other
contributions (I,D) can produce an approach to the target temperature that is free of overshooting,
and maintain a stable target temperature. A further improvement is to automatically adjust the
relative weights of the P,I, and D contributions, to maintain this stability even if the thermal inertial
properties are changing, for example as the level of the fluid in the reservoir is changing.

9.2 An ultrasonic pinger

First developed for distance measurement in autofocus cameras, ultrasonic distance measurement
is based on a simple time-of-flight measurement for an ultrasonic sound pulse. It can be used to
measure distances with high precision (±2mm is typical), using a standard ultrasonic transceiver
(both a transmitter of the pulse, and a receiver of the echo signal from a distant object) and
a timer-counter that measures the time between the sending of the pulse and the receiving of the
echo. With proper calibration (the speed of sound in the air varies with temperature and humidity),
a transceiver interfaced to a microcontroller is an excellent distance measuring device. It can be
used in a Mechanics lab, or for non-contact level measurements in a well, or as a parking guide
device in tight spaces.

9.3 A chaotic dripping tap

The incessant drip-dripping sounds of a leaky tap drive us insane late at night, but a precise
measurement reveals that the time interval between drips is almost never perfectly periodic. In fact,
drop formation is influenced by a number of factors, including the size of the previous drop. As a
result, the dripping tap is an example of a chaotic system, and a variety of dynamic measurements
can be performed, demonstrating period-doubling, attractors, and other features typical of the
dynamics of chaos. An infrared LED/detector pair interfaced to a microcontroller is sufficient to
perform time-between-drips measurements that can be logged and analyzed.

9.4 A universal digital knob

There is a distinct advantage to being able to “turn a knob” to control something; there is a tactile
feedback that tends to feel natural to the operator, and reduces the error rate. However, analog
knobs, based on variable resistors or capacitors have limited range, and are mechanically unreliable;
they are also quite expensive. On the other hand, an electronically-controlled counter that uses
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up/down buttons is awkward to manipulate and provides no tactile feedback. One interesting
compromise can be realized if a digital rotary encoder can be used to control a digital register
value. In general, these devices generate a series of pulse that can be used to increase/decrease a
counter value; in the best designs, some accounting of the speed of the turning is made, so that
slowly turning the shaft produces individual pulses, while turning it more rapidly also increases the
“step size”, generating more pulses per unit rotation, a form of adaptive “ballistic” control. One of
the most inexpensive ways to implement such a universal digital knob is by interfacing a stepping
motor from an old floppy drive to a microcontroller.

9.5 An LCD bar-graph

A companion project to the previous one is a way to display the value of a register as a simulated
bargraph, using the special block graphics characters available on an LCD display interfaced to a
microcontroller. Some button action (up/down scrolling through a list of registers, or simply one-
of-five single-button selection of registers) selects a particular variable/register; the “digital knob”
changes its value, and the LCD displays the name/address of the variable and its value, with a
simulated LCD bargraph providing a visual representation of the value. As a stand-alone project,
an LCD bargraph could be used as an add-on feature to a straightforward digital voltmeter.

9.6 A joystick-controlled servomotor

Fly-by-wire controls physically separate the controller (a joystick) and the devices that are perform-
ing the action (servomotors). Instead of mechanical or hydraulic linkages, an electronic connection
is made. In an analog joystick, the position controls two variable resistors (x– and y–directions)
and in a digital one, it effectively presses one of four switches, one for each of x, y, −x, and −y
(or eight, if each direction has two positions, indicating half and full strength). This information
is processed by a microcontroller and converted into an electronic signal that is then sent to a
remote microcontroller that in turn uses it to control the state of an action device. Along the way,
the command signal may be manipulated in some way, for example to ensure that an unstable or
a dangerous configuration is not accidentally requested by a user, or that all transitions from one
state to another are optimally smooth and do not exceed a certain rate of change (in an aircraft this
might result in a dangerous-to-pilot g-force). A single microcontroller with a joystick at its input
and a servomotor at its output is enough to create a simple fly-by-wire controller that demonstrates
most of the essential features of such a system.

9.7 Decoding an infrared remote control

Infrared pulses can be used to carry signals wirelessly across short distances in line-of-sight config-
urations. These are used in a variety of devices, from TV remote controls, to shared office printers,
to toys such as the Furby, capable of some form of communication with its own kind. To build or
debug an IR-enabled communications device it is useful to have a decoder of what these devices are
sending through the IR, into a sequence of readable ASCII codes. A more ambitious project would
involve two-directional communications, both reading what the other IR transmitter is sending,
and sending one’s own signals out. This is easily implemented using a microcontroller; this is what
is at the heart of all “universal programmable” remote controls that are widely available. With
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a microcontroller-based decoder/encoder attached to a serial port, you can make your computer
communicate with all such devices, and to replace all of your remote controls with a software one.

9.8 A PIC-based mouse controller

A typical electromechanical pointing device (a mouse) has a large rubberized ball rolling on the
work surface and in turn rotating two orthogonal slotted wheels, one for the x- and one for the
y-motion. Each slotted wheel interrupts two infrared beams, producing a pair of logical pulses, 90◦

out-of-phase. Each pair of pulses corresponds to a step of displacement, and their relative phase
determines the ± direction of motion. Typically, these TTL signals are converted by a dedicated
mouse controller IC into a stream of codes sent through a serial connection to the computer,
reporting the displacement of the mouse. The same task could be performed in software running
on a microcontroller. In this way, non-standard display modes (for example, direction and velocity
display) could be programmed. If a sufficiently fine resolution can be obtained, the two-wheel
interface could be adapted to display in real time the action of a chaotic two-pendulum magnetic
toy, or to the monitoring/control of a model Foucault pendulum. For the latter, useful pointers are:

• Richard Crane’s article in the References section on the PHYS 2P32 website

• http://en.wikipedia.org/wiki/Foucault pendulum

• http://www.iop.org/EJ/article/0031-9120/19/6/412/pev19i6p294.pdf

• http://www.sas.org/E-Bulletin/2002-04-26/handsOnPhys/body.html
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Appendix A

Breadboards

Breadboards permit quick solderless connections between the components of an electronic circuit.
As indicated in the diagram, the holes of the breadboard are split into parallel sets of five (5).
Within each hole is a metal clip to hold a wire and the clips in each set are connected together.

Two wires can be connected electrically by placing their ends into two holes belonging to the
same set of 5 holes. The connector sets in the outside rows have been joined together to form four
(4) extended rows. (Some breadboards do not have connections at points A and B resulting in eight
“half” rows.) These outside rows are often used to supply power to the board. After an external
power supply has been connected to one of these rows, power can be withdrawn to supply electronic
circuits at any location along the board.

Each of the breadboards you will use is assembled on a plug-in unit that fits into one of the
connectors on the common backplane. On this backplane you have access to five pairs of banana
jacks (red and black), and five coaxial BNC connectors. All black banana jacks and the outside
contacts on the BNC connectors are grounded and are thus electrically equivalent. The red banana
plugs and the center conductors of the BNC connectors are all routed to each of the plug-in bread-
board modules. In addition, ±15V, +5V, and 0V DC power connections are also available on each
breadboard. Fig. A.1 shows the location of the common connections on the breadboards.
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Figure A.1: Layout of common connections on the breadboards

The banana plugs and the BNC connectors are used to connect the components on the bread-
board to the external devices such as meters, scopes, and function generators. You should not
connect wires directly between the breadboard and an external device; it is unsafe. The proper
breadboarding technique is illustrated in Fig. A.2.
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Figure A.2: The proper breadboarding technique
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Appendix B

Resistor Colour Code

Colour First Band Second Band Third Band

Black 0 0 100

Brown 1 1 101

Red 2 2 102

Orange 3 3 103

Yellow 4 4 104

Green 5 5 105

Blue 6 6 106

Violet 7 7 107

Gray 8 8 108

White 9 9 109

Gold - - 10−1

Silver - - 10−2

Fourth Band:
Silver is ±10% tolerance
Gold is ±5% tolerance
No band is ±20% tolerance

For example, the resistance of a resistor whose bands are red, red, red, silver is

22× 102 −→ 2.2 kΩ± 10%
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Appendix C

Plotting with physica

An integral part of every lab is an analysis of the results, and it is best done with the help of a
scientific visualization/plotting/fitting computer program. There is a large number of such programs
for different computing platforms. If you are comfortable using one such package already, you may
use the software you already know. However, bear in mind that:

• the software must be able to perform multi-parameter non-linear fits, and a proper statistical
evaluation of convergence (e.g. χ2);

• you must bring your own laptop computer to the lab;

• the instructor may not be able to help, not being familiar with the quirks of your software.

What is made available to you in the lab is a powerful scientific plotting and fitting package called
physica, written at the TRIUMF accelerator in Vancouver, BC. This is the recommended software
for use in the analysis of experimental data and in the preparation of lab reports, theses, and
scientific articles.

The main physica “engine” is an “old-fashioned” piece of software in the sense that it has a
command language and requires typing of commands at the prompt, and not clicking a mouse and
using visual widgets. On the other hand, it is easy to learn, its numerical engine is an extremely
powerful one, and a macro language allows you to automate many tasks using only a text editor. In
order to harness the full power of physica you may need to spend some time learning its command
language.

In addition, Physica Online is a web-based interface into physica which may prove adequate
for most tasks. It is fairly self-explanatory and can be invoked by pointing a web browser to

www.physics.brocku.ca/physica/
For more advanced tasks, the web-based Physica Online provides the “expert mode” which does
allow access to full capabilities of physica.

A stand-alone version of Physica Online is also installed on all the Linux machines in the Physics
cluster under the name of PhysicaLab. It is a local Tcl/Tk script that acts as an interface into the
same “engine” that drives the web-based Physica Online.

Recently, a new, graphical user interface version of physica called eXtrema has become available
from exsitewebware.com/extrema/, in both Linux and Windows versions. You may want to
download and install it on your home computer.

On-line physica tutorial

A quick way to get into physica is through the on-line tutorial created here at Brock.
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• log on to a Linux workstation;

• open a web browser and an 80x24 shell window (a terminal icon) side-by side; point the web
browser to

www.physics.brocku.ca/doc/physica/

and type physica in your shell window; a separate graphical output window will open up,
and the shell window will display the PHYSICA: prompt; proceed at your own pace.

• You will likely want to use your favourite text editor to create small macro command files.
You may want to arrange all windows side-by-side for convenience. Remember to not resize
the graphics window of physica with a mouse (use a resize command at the PHYSICA:

prompt).


