Brock University @ Physics Department

St. Catharines, Ontario, Canada L2S 3A1

Phys 2P32 : Electronics (ll)
Laboratory Manual

E. Sternin and F.Boseglav

Copyright ¢ Brock University, 2013{2014

Contents

Preface
Introduction e e e e e e e e
Conventions used inthismanual
Plotting and tting with physica
References e e e

1 Introduction to Electronics Workbench
1.1 Preliminaries e
1.2 Virtual circuits in Electronics Workbench
1.3 Realandidealmeters. e
1.4 Review of basic electronic components oo
1.5 Digital indicators and controls e
1.6 Bit combinations control a 7-segment LED display

2 Logic Gates
2.1 Circuit assembly techniques
2.2 Combinations of NAND gates implement other operations
2.3 Abinary counter e

3 Combinatorial and sequential logic
3.1 Divide-by-two ip-op e
3.2 Abinary counterwith D ip-0psS e e
3.3 One-of-eightdecoder e
3.4 Adesignchallenge e

4 Oscillators and clock circuits
4.1 555 timer IC as a square wave generator e e
4.2 Crystal oscillator and ripple counter

5 Building a counter
5.1 Building a device, stage by stage
5.2 Avirtual prototype e
5.3 Circuitrealization e e

6 Four-bit multipliers
6.1 A summing multiplier e
6.2 A shiftadd multiplier
6.3 Anarray multiplier e e
6.4 Look-up table multiplier

<

oOUuNWRRPE

© oo~

7 PICLab project board

7.1 Introduction

7.2 Pre-assembly review of partsandtools
7.3 Assembly of a PICLab projectboard
7.4 PICLab basic functionality tests L L

8 PICLab programming
8.1 Assembler instructions and code development
8.2 Loops, conditional branching, and calls to subroutines.
8.3 Macros and subroutines e

8.4 Interrupts

8.5 Analog-to-digital conversion e
8.6 Utility subroutines and data output L

9 PICLab data acquisition project
9.1 APID temperature controller

9.2 An ultrasonic pinger

9.3 Achaoticdrippingtap e e
9.4 Auniversal digitalknob

9.5 An LCD bar-graph

9.6 A joystick-controlled servomotor L
9.7 Decoding an infrared remote control
9.8 APIC-based mouse controller

A Breadboards

B Resistor Colour Code

C Plotting with

Plotting with

physica
physica

29
29
30
33
35

37
40
41
43
44
45
46

47
48
48
48
48
49
49
49
50

51
54
55
55

Preface

Introduction

Mastering Electronics is not an easy task. While many concepare straightforward, their ap-
plication to a real-world device are often non-trivial. Par of the di culty is that in addition to
new concepts one often has to learn new numerical and algabrtools that enable us to predict
the values of various components to use, to select their setys and operating points for optimum
performance. Putting it all together can be quite daunting.

In this laboratory you will use a variety of tools to achieve yst that:

hands-on experiments, where you will assemble real cirauitising real components, meters,
wires, and devices | workstations with multi-meters, function generators, oscilloscopes, pro-
grammable power supplies, and bread-boarding stations gpeovided for this purpose;

computer-based tutorials using software calle&lectronics Workbench , where virtual cir-
cuits are assembled, tested and analyzed using the commoagrical \drag-and-drop" skills;

graphing and numerical analysis of the results of your rear wirtual experiments, with the
help of the physica software or its graphical versiorphysicalab .

A typical lab experiment may consist of simulating a circuit choosing the optimal value for some
component, then assembling the very same circuit on the brdaoard in the lab, testing it, and
nally, analyzing your measurements and comparing them tolte predictions of the theory learned
in the lectures.

Lab books, reports and marking

Some lab sessions are devoted to the computer-based exercissingElectronics Workbench . As
you go through the exercises, be sure to answer all the quests in your lab book and record
pertinent observations. Screen capture a copy of all the cirits that you simulate and import them
into your lab report. Be sure to save a copy of all the workingircuits to your le space beforeyou
begin the simulation.

Other experiments involve actual electronic components dreircuits. Sometimes you will assem-
ble exactly the same circuits that you had simulated in an eler experiment. A similar step-by-step
write up in the lab book is expected. All of your individual olservations and measurements must
be included. Here you can capture the screen output and seittjs from the digital oscilloscope and
save it to your lab report.

Following every lab you are required to submit a lab report asyzing and summarizing the data
and the experimental procedures. The lab report should bepgd, single-sided, and submitted in a
clear report cover/document folder. The grading is based ahe following:

overall neatness and coherence in the structure of the reor
completion of all the required simulated and experimentaltsps;
inclusion of printouts, data tables, circuit and waveform ketches;
thoughtful and understandable responses to the guide quasts;

adherence to the designated lab format.

You will nd it most e cient to open a wordprocessor document at the start of the lab and
then enter observations, data, screen captures of circuitgraphs and oscilloscope traces as
you proceed with the experiment. This way, the overall struare of the lab report will have
been created and can be easily enhanced with further detagélad insights.

A lab report should start with an overall statement of purpog of the experiments. Therfor each
exerciseinclude a schematic diagram of the circuit and graphs of theaveforms observed, formula
derivations, a description of the theoretical behaviour dhe circuit and comparison with your actual
observations, and answers to the pertinent questions. Thegsentation of your results should be
organized and complete, your diagrams titled and refereraieso that someone who is not familiar
with the experiments would have no di culty understanding what was done.

At the end of the lab report, include a brief Conclusions seicin that summarizes the results and
discusses problems encountered and insights gained. Thepgmse is to reach the synthesis stage,
to give you a chance to establish intermediate milestones your learning.

Completed lab reports will be collected at the beginning ofhe next lab; thus you have a full
week to complete your lab reports. However, you will nd it eaier to do the write-up within one or
two days of the end of the lab, while the details are still frésin your mind. There will be no time
extensions given for late submissions. Late labs receive ex@ grade; all labs must be completed
with a passing grade to satisfy the lab component for the cose.

Be prepared!

Some of the experiments will require the full 3-hour lab pevd; therefore, it is essential that you
are fully preparedbefore attending your lab session.

Arrive on time. Your lab starts at 2:00 pm sharp!
Be sure you have read through the experimeni its entirety at least once before arriving.

Your partner cannot be expected to wait for you. Failure on tbB above two points can result in
you working alone (time permitting), or being asked to make p the experiment some other time
(depending on the availability of equipment).

Plagiarism

When you are working closely with your partner, it is understod that parts of the lab reports will
appear similar; however, plagiarism will result in aero for that report. It is your responsibility
to consult the section on Academic Misconduct of the Univeitg Calendar prior to the rst lab
session.

Conventions used in this manual

. l - Whenever you see a paragraph marked o with this symbol, it idicates an experimental
step. You are expected to perform one or several operationsdawrite down your results and
observations in the lab book.

When you encounter this symbol, it indicates a question or arpblem. You are expected
to perform the necessary calculation (using pen and paperhé to provide a written answer
and, possibly, a brief explanation in your lab bookeforeyou proceed to the next stage of the
experiment.

Plotting and tting with physica

An integral part of every lab is an analysis of the results, ahit is best done with the help of a
scienti ¢ visualization/plotting/ tting computer progr am. The Physics Department uses a plotting
and tting package called physica, written at the TRIUMF accelerator in Vancouver, BC. This is
the recommended software for use in the analysis of expermmed data and in the preparation of
lab reports, theses, and scienti c articles.

The main physica \engine" is an \old-fashioned" piece of software in the seesthat it has a
command language and requires typing of commands at the prpmand not clicking a mouse and
using visual widgets. On the other hand, it is easy to learntd numerical engine is an extremely
powerful one, and a macro language allows you to automate nyatasks using only a text editor.

A simple to use interface to Physica available only on the Plsycs Department computers is the
Physicalab data acquisition and plotting software used in the rst-yea Physics labs. Open
a terminal window and type Physicalab at the command prompt to invoke the program.

In addition, Physica Online is a web-based interface intghysica which may be accessed
from any web browser. It is fairly self-explanatory and can & invoked by pointing a web
browser to

http://www.physics.brocku.ca/physica/

For more advanced tasksPhysicalab and Physica Online provide an \expert mode" which
allow access to full capabilities ophysica. In order to harness the full power ophysica you
may need to spend some time learning its command language. i

References

In addition to your course textbook, numerous excellent imbductory electronics books exist, and
you are encouraged to refer to them often. Some selecteddglare listed below, with Brock Library
calling numbers shown where appropriate.

Other references such as manufacturers' data books and thgqugpment manuals should be
consulted as needed; most of them are available online. Thelwpage of the course has some select

pointers in the section| Reference$and is a good place to start.

1. D. Barnaal, Analog and Digital Electronics for Scienti ¢ Applications Waveland Press, 1982.
TK7816 B34.

AN

(62}

. J.J. Brophy, Basic Electronics for Scientists McGraw{Hill, 1990. TK7815 B74.

M.M. Cirovic, Basic Electronics: Devices, Circuits, and Systemsl974. TK7815 C53.

. A.J. Diefenderfer and B.E. Holton Principles of Electronic Instrumentation. Saunders College

Pub., 1994.

. W.L. Faissler, An Introduction to Modern Electronics. J.Wiley & Sons, 1991.

P. Horowitz and W. Hill, The Art of Electronics. Cambridge University Press, New York,
1989. TK7815 H67.

H.V. Malmstadt, C.G. Enke, and S.R. CrouchElectronics and Instrumentation for Scientists
Benjamin/Cummings Publishing Co., 1981.

R.E. Simpson, Introductory Electronics for Scientists and Engineers Allyn and Bacon,
Boston, 1987.

Vi

name (print) student ID lab date grade

Experiment 1

Introduction to Electronics Workbench

1.1 Preliminaries

You may be quite familiar with using a general-purpose comper, such as a Windows PC or a Mac,
but the computer environment you will nd yourself in in the Electronics lab is more specialized,
and may present additional challenges. Be sure to attend thatroductory lecture o ered by the
Brock Information Technology Services (ITS) early on in theemester. The computing environment
around Brock evolves quickly; your lab instructor should h& the most up-to-date information.

Currently, the ITS operates several computer labs within ta Department of Physics (B203 and
H300 are the two largest ones), all of them deploying identt Linux-based workstations. Logging
on to any of them with your Brock assogned Campus username/gsword will bring you into the
exact same environment, and all the les in your home directg will be available to you (they are
stored on one central network server, accessible from all nkstations equally).

In addition, this course makes a heavy use of a circuit simulan program called Electronics
Workbench(EWB, also known as the National Instruments Multisim due toa recent corporate
change). Unfortunately, there is no Linux-compatible veisen of this software, and it has to be
run from a separate central Windows server. You access thisrger using the same Campus user-
name/password.

. l . Log on to the Linux workstation using the Campus username/psword.

. l . Click on the OpenSUSE icon at the bottom left of your screenhen click onSciencefollowed
by Electronics Workbenchto open login window to the Windows server. Enter the same
Campus/username/password and a Windows Desktop will appea

' l + Click on the EWBS5 icon to start the program.

Move around and examine the menus and controls. Pausing a sar over an unknown item
should bring up a bubble of a description of what the item is. fie simulation is controlled by
the on/o switch at the top right corner of the screen. If you are lost, wjt and restart the
program.

1.2 Virtual circuits in Electronics Workbench

Electronics Workbenchis essentially \an electronics lab in a computer”, and the wait appears
on your computer screen is shown in Fig. 1.1. The white eld inthe middle is the workspace
into which you drag various components and devices found ilé multiple parts bins divided into
several categories, just above the workspace. When you thbring the mouse near the edges of

1

2 EXPERIMENT 1. INTRODUCTION TO ELECTRONICS WORKBENCH

Menus Circuit Tool Bar Parts Bin Tool Bar Circuit Activate Switch Pause/Resume Button

Circuit Title

Open
Instrument

Scroll
Bar

Description

Window \vmtege-mnuouedvrequencygenem
i) 2 | \ _ofﬂ
== 200ms i / e 270 t/ \

Status Line Scroll Bar Circuit Window

for. The outputis being frequency-modulated by the sinusoidally varying voltage atthe control pin of the 555

Figure 1.1: Electronics Workbench screen

each component, they turn into dark dots representing nodex your future circuit. Click and drag
until a line stretching out of a node reaches a node of anotheomponent, then release. You just
connected a virtual \wire" between the components. The wie snap to a grid (which can be made
explicitly visible through the menu), and as you move components around the wires stretch
and follow as needed.

After a few mouse-clicks, you can assemble an entire virtuaircuit that includes passive and
active components, meters, oscilloscopes, and other vialucounterparts to the real devices and
instruments found in an electronics lab.

There is one important di erence to working with a virtual circuit. As you are putting it
together, the program creates a set of mathematical equatis that describe the circuit. As you
then ick the virtual ON switch, the computer proceeds to sole these equations, quickly and with
great precision, and reports and even plots the results. A naty of values can be swept through
quickly and automatically, to discover the optimum ones; arentire frequency response curve can
be obtained with a single click of a mouse.

What happens is that you are able to concentrate on thphysicsof the problem, and not on
the sometimes tedious details of setting up and solving a figi large system of coupled linear and
di erential equations. You do not need to be careful with thedetails of these calculations, and
you concentrate instead on making sure you understood the Hmviour of the circuit and how this
behaviour relates to the underlying theory.

When you concentrate on the concepts and avoid applying by teoa memorized set of steps
you are studying for mastery. When you understand what is gog on behind the equations, you
can apply that understanding to problems where the rote metid is sure to fail. In our computer-
assisted labs you will learn to test your understanding, to ake up circuits and to predict the results
mentally, then have the computer verify (or not!) your predctions. You will build up your intuition
on the subject of Electronics. In some sense, your e orts Witlosely parallel what physicists do

1.3. REAL AND IDEAL METERS 3

every day in their research, something often called \the gamiti c method": organize your knowledge,
develop a theory, make predictions, test them by experiment

The results of this exploration need to be described in a comepe, coherent fashion to allow a
reader (or marker) familiar with the subject the opportunity to understand your methodology and
attempt to reproduce your data. Do not assume that the reader has intimate knowledge of your
experimental setup and goals.

For each of the following exercises, explain fully the proderes undertaken, your observations,
followed by a short summary of your results. Include screeragtures of all circuits, simulation
output, data tables and meaningfully scaled graphs. Do notefer to the lab manual; includeall
pertinent details, in your own words, as part of the report. 8pport all statements and conclusions
with experimental evidence or reasoned arguments.

Hint: You can screen capture Electronics Workbench output by gainto the OpenSUSE start
menu then clicking onAccessoriesfollowed by Screenshat In the window that opens, select to
capture a screen region, outline the area of interest by psesg the left mouse and moving the
cursor to outline a rectangular region, the release the butin and save the output to a le. You
can conveniently include the schematic, instrument settgs and output, as well as descriptive text
(A, textbox from the Miscellaneous submenu) as one capturéat can be saved and imported to a
document. Do not append printouts to the end of the lab report.

1.3 Real and ideal meters

-1+ Consult your notes or the Web to determine the internal con gration of a real (non-ideal)
voltmeter and ammeter.

.1+ Pull down a battery (in the sources bin, move the mouse over ¢hicons and a bubble with the
~ name appears) and a multi-meter (in the instruments bin) inb the worksheet. Double-click
the multi-meter icon for a close-up view. Verify the multi-neter is in voltage modej.e. that
is highlighted. Practice connecting/disconnecting the wes and moving the components
around the worksheet. Move the components to verify that thevires are properly connected
to them and that the electrical circuit is complete. Connegbns display a black dot.

When do you see a positive reading on the meter? a negative 8ne
-1 While the meter is connected to the battery, switch it into the current mode by pressin@.

What happened? Why do younever do this to a real meter? Refer to the internal circuit for
a real ammeter to describe what happened. Click the multimet Settingsbutton for further
insight. What is the most common way used in real multi-metex to protect against errors
like this?

.1 Switch the meter back to voltage mode. Pull down and insert a & resistor in series with
~ the battery. (Position the resistor directly over an existhg wire, and release; the resistor will
insert itself.) Vary the resistance; is the voltage on the niti-meter changing? Hint: you
may have to go to pretty highR values!) Try to nd the point where the meter reads exactly
% of the nominal battery voltage.

In EWB the batteries are always ideal sources; however, theeters are not. The point of
%-voltage is where the internal resistance of the (non-idgaimeter is exactly equal to the
external R. Explain your result and provide a calculation to support yar observation.

4 EXPERIMENT 1. INTRODUCTION TO ELECTRONICS WORKBENCH

1.4 Review of basic electronic components

While logic gates are all that is required to construct a digal circuit, you will nd that to interact
with your digital system some familiarity with the behaviou of basic electronic components such
as resistors, diodes and transistors, is necessary.

The resistor is a linear circuit element in that it obeys Ohns Law: V=I*R, where a voltage V
across a resistance R causes a current | to ow through the rs®r. The resistor is typically
used in series with another component as part of a voltage dier or to limit the circuit
current.

The ideal diode can be visualized as a switch that is turned (R 1) until a positive
voltage (forward bias)V V., is applied across the terminals. The negative diode termiha
(cathode) is represented by the at line. When turned on, a Mtage V,, will be present ascoss
the diode andR 0. The value ofV,, is 0:6V for a Silicon diode, 0:3V for a Germanium
diode and 1.5V for a GaAs red light-emitting diode (LED). Continuous diodecurrents
much greater than 10-20 mA will cause LEDs to burn out.

The bipolar transistor is a three terminal device. The terrmal with the arrow is the emitter,
the opposite terminal is the collector and the centre termial is the base. This device is a
current ampli er in that the emitter-collector current icg = ige , the base-emitter current
times the transistor current gain . The base-emitter junction behaves like a diode so that
ige OandRceg 1 until Vegg Von. As Vge increasesRce ! 0.

In the digital domain, a transistor is typically used to swith on/o devices that require more
current than a logic gate is capable of supplying, such as LEDlamps and relays.

You can incorporate these components in the
circuit as shown. Use a scope (from the Instru-
ments menu) to monitor the base and collec-
L tor voltages. Drive it with a 10 V peak-to-peak
E— square wave centered at zero volts with a fre-
guency of less than 1 Hz. The round indicator
probe turns on (solid color) at 2.5V. The LED
is on when the arrows are lled in.

R

o1 7]

]
LO‘PH
o0
[

470 Ohm

10 k Ohm

X
(]
=z
®
4

.1+ Start the simulation and observe the be-
~ haviour of the circuit. Note when the LED
is on and when it is o (circle below) in
- terms of the voltage at the base,, and at
the collector, V., of the transistor and the
corresponding voltages across the compo-
nents:

Figure 1.2: Transistor as a switch

| V| V.| LED | probe |
low on/o on/o
high on/o on/o

1.5. DIGITAL INDICATORS AND CONTROLS 5

Explain the operation of the circuit for the two input states What is the purpose of the
470 and 10 K resistors? What logic operation does the transstor perform? What is the
maximum current that could ow through the LED?

1.5 Digital indicators and controls

.1« Clear the screen of all components, or simply open a new ciitcpage. Find and drag down
~into your circuit page the word generator (from the Instrumets submenu) and several one-bit
logic probes (from the Indicators submenu). You can enter geences of 4-digit hexadecimal
numbers in the data window or load a stored pattern. The sequoeer can be single-stepped
or made to cycle through this list at a certain predeterminegace. The sequencer can also
be put into an in nite loop, repeating the steps you programred and returning back to the
beginning.

For each number, the corresponding pattern of high/low voétge levels is produced on its 16
outputs. Edit the pattern list to contain a few lines with di erent bit patterns; try to include
FF, 00, and other interesting bit patterns in your sequence. Stephtough the sequence and
observe how the pattern of indicators connected to the sequeer output lines follows.

.1+ Logic probes are ideal sensors of the logical state of any evin the circuit; a more realistic
- way is to use light-emitting diodes (LEDs). Drag several LEB or an eight-LED bar graph
indicator into your circuit, and connect the anodes of each ED diode to the outputs of the
sequencer. Connect the cathode ends to ground through 220resistors. These serve as
current-limiting resistors, without them the LEDs would \burn out" almost instantly. Enter
a two-line sequencédA, 55 which will create an illusion of lights running up your LED ba
graph.

Modify your sequence to create a single running lighf0000001, 00000010, 0000010QCetc.

. l . Replace the LED bar graph with a 7-segment LED display. Assdie the circuit shown.

The 7-segment LED display has seven inputs
that each control the lighting up of a particular

0000 XXX |3 ;
|oc l segment of the display. Thus for each pattern
of bits produced by the pattern generator, there
|| [appears a pattern of lit LED segments. The

labeling convention and pin assignment for each
segment can be found in the help menu for the

Figure 1.3: Controlling a 7-segment LED
g g g device.

.1 Map each segment to an output of the
word generator, then generate a table of bit patterns that soespond to the 7-segment repre-
sentations of the decimal digits 0-9. Program the list of p&trns into the generator's table to
produce a sequence of seven-segment digits from 0 to 9. Set plattern generator into a loop
mode over the list you entered, and verify that the display gpears to \count" from 0O to 9.

' l . For an extra challenge, expand the list to 16 entries, one f@ach of the hexadecimal digits.

6 EXPERIMENT 1. INTRODUCTION TO ELECTRONICS WORKBENCH

1.6 Bit combinations control a 7-segment LED display

The previous section demonstrated a \brute-force" appro&¢ usually the job of controlling the
individual segments of a 7-segment display is given to an @drated circuit called BCD-to-7-segment
encoder.

.|+ From the DEC menu in Flip/Flop bin, place a \Generic BCD-to-seven-segment decoder" into
~ your circuit, between the sequencer and the 7-segment LEDsglay. The conventional order is
that on the BCD side the bit A is the least signi cant bit, and that the seven-segment display
inputs are A-to-G left-to-right. Make sure that the LT (lamp test), Bl (blanking input) and
RBI (ripple blanking input) are tied high, i.e. attached to aV,. 5V. Modify the sequencer
program to count up from 0 to 9, and then back down to O, a total 019 steps.

Lab Report

Submit a lab report consisting of the work undertaken duringhis lab. waveforms observed, formula
derivations, a description of the theoretical behaviour ahe circuit and comparison with your actual
observations, and answers to the pertinent questions. Thegsentation of your results should be
organized and complete, your diagrams titled and refereraieso that someone who is not familiar
with the experiments would have no di culty understanding what was done.

At the end of the lab report, include a brief Conclusions seicin that summarizes and compares
the results from the simulated and hands-on portions of theab and a discussion of any problems
encountered and insights gained.

Note: The lab report for this experiment is due before the beginngnof the next scheduled lab
session, one week later. Late labs receive a zero grade. TisBathe lab component for the course,
all lab reports must receive at least a passing grade. Be sucehave read and are familiar with the
preface section of this lab manual.

Note: You need to prepare for the next experiment by designing seaé logic operations using
NAND gates. Be sure to have these circuits ready to use.

name (print) student ID lab date grade

Experiment 2

Logic Gates

The principles of digital logic govern the operation of all adern computers. The objec-
tive of this experiment is to become familiar with basic laggates and their appropriate
logic truth tables. These logic gates are then used to comstr various simple logic
circuits such as an adder, a latch, and a binary counter.

2.1 Circuit assembly techniques

You will be using a breadboard to assemble and test your hands circuits. The breadboard
provides a convenient and organized way of implementing cirits, making quick component changes
and providing trouble-free circuit connections. On the baa you have access to ve pairs of banana
jacks, red and black. Also, there are ve BNC coaxial connegts. A cable supplies the board with

15;+5 and 0 Volts DC. The black banana jacks and the outer ring offte BNC connectors have a
common connection to ground, or OV. These signals are all dable to the protoboard, the matrix
that you will build your circuits on, as shown in Figure 2.1.

i i BNC1 BNC2 BNC3 BNC4 BNC5
O 4) (; O &y
BP1 BP2 BP4 BP5

All BNC, BP connections o

have a common ground o

Power connections extend 6600 60060
only to middle of board 06660 069060
Pins are grouped in rows 06600 066060
of five 66060 G6Oo060
—15V +15V

(Gnd) OV +5V

Figure 2.1: Electronics lab breadboard connection matrix

8 EXPERIMENT 2. LOGIC GATES

To make the experience of assembling a working circuit morajeyable:
Be sure that the power is OFF;

verify by direct measurement the values of all the circuitomponents;

minimize the use of jumper wires by connecting componerdgectly to one another;
verify that the jumper wires used are not broken (test for O resistance);

assemble the circuit in a systematic and organized fashjo

check o each component as you add it to your circuit;

verify that your assembled circuit connections correspd to those of the schematic diagram;

© N o 00 bk~ 0 NP

turn ON the power and test the circuit for proper opearatia.

If the circuit does not behave as expected, you will need to desome troubleshooting. Use
the schematic diagram as a guide to determine the voltage &s that should be present at various
points of the circuit, then use a voltmeter to measure theseodes. Develop a systematic approach to
assembly and veri cation of the circuit that you are building. As the circuits get more complicated,
you will nd it advantageous to construct the circuit in stages, verifying the proper operation of
the circuit after each progressive step.

2.2 Combinations of NAND gates implement other opera-
tions

Additional components required

two 7400 IC chips and one 7473 IC chip
four LEDs and ve 470 current-limiting resistors

NAND gates can be com-
+5V bined to form other logic gates.
You must prepare for this lab

o by designing and drawing the
[schematic diagrams of the follow-
ing circuits, made up entirely of
M\ NAND gates:
an AND gate
R an exclusive OR (XOR)
gate
a half-adder

<> <> 4700 C) a gated latch
Lk Lk Ik In the example shown in Fig-

* fsotf::esho;fw?re ure 2.2 three NAND gates form
an OR gate. The LEDs on this
diagram monitor the state of the
Figure 2.2: An OR gate made from NAND gates inputs and the output. Each
one is connected in series with a
current-limiting resistor R.

2.3. A BINARY COUNTER 9

Most integrated circuit (IC) chips contain a number of logic

gates. In this experiment, the 7400 chip used contains foues bel_el [l fol_fo] [e]
arate NAND gates. Make sure you start by making the power @
connections (ground and +5 V).
For each of the above circuits (an AND gate, an XOR gate,)
a half adder, a gated latch):
-1 . Draw the circuit (neatly). Label your gate connections with 17 127 5] [¢] 5] [¢] [7]

the corresponding chip gate pin numbers, as shown in Fig- CND

ure 2.4. This will ease the process of circuit assembly and

troubleshooting. Figure 2.3: Pinout of a 7400

.1+ Assemble the circuit. Begin by installing the 7400 chip.
- Connect the power pins. Connect the gates and switches
with jumper wires. Add the LEDs. Verify the correct orientaton of each LED by connecting
one end of the current-limiting resistor to the LED anode andhe other end to +5 V. If the
LED glows, it is inserted correctly. Re-connect the resiste as shown.

. l . Verify the circuit operation by testing all input combinations; record the results as a truth
table. (Remember that you can simulate these circuits usinglectronics Workbench; data
sheets that describe the logic states and expected operatiof all these chips are available on
the Web.)

- l - Include Boolean explanation (as done in the OR example) in yoreport.

2.3 A binary counter

+5V = +5V
fl [2] [o) [5] [e]
| L] | L]
J Q' Q J Q' Q
> CP CLR' K CP CLR' K
| |
2] [3] [a] [5] [e] [7]
+5V +5V +5V +5V +5V
Dual JK Master/Slave
Flip—Flop 7473 %R %R
| AN
Switch Debouncing @2 2° @2 2! @2
Circuit * x cathode of LED * *
is the short wite

Figure 2.4: A binary counter

10 EXPERIMENT 2. LOGIC GATES

The binary counter, shown in Figure 2.4, is made using a 7478al JK ip- op chip. This chip
has several modes of operation, depending on the the signaldls at the J and K inputs. With
J=K=+5 V, the ip- op performs a toggling function, so that t he Q output changes logic state
whenever a high to low transition occurs at the CP (clock puéy input. Thus the Q output changes
state at one half the rate of CP.

The switch, resistors and NAND gates make up a pulse generatbat drives the counter input.
When an electromechanical switch makes or breaks a contaatseries of pulses lasting some 1-5 ms
are generated. This e ect is known asontact bounceand is very undesirable in fast digital circuits.
Since the gate delay and hence response time of ip- ops isamd 10 ns, many pulses would be
counted every time a switch is toggled, resulting in an errat count. To debouncethe switch, two
NAND gates connected as an RS latch are used.

Apply the above information along with the truth table for the RS latch to describe how the
circuit debouncing is preformed. Again, the Web or your texiook may be a useful resource.

- l . Assemble the switch, resistors, gates and LED for the debatecircuit, following the assembly
procedures previously outlined. Document how the output dhe debounce circuit behaves as
the switch is toggled. Is this the behaviour of an RS latch?

. l . Add the counter circuit components. Graph the input pulsestaCP from the debounce circuit
and the values of 2 and 2! below one another and using the same arbitrary time scale. Boh
movementB ! Al B represents a single input pulse.

Advise the demonstrator when the counter is working and demetrate its operation.

. l - Remove the debounce circuit from the CP input of the counter.Reconnect the switch as
follows: A to +5V, B to 0V, and the common point to CP. Toggle the switch. Graph the
output states of the counter as you did before. Describe youesults.

.1~ Remove the switch from the CP input. Connect CP to one of the BN1 contacts on the

~ breadboard. Connect a cable from the BNC1 connector to the SXC output of the signal

generator. This output is a 0-5V square wave that can be used tlock digital circuits. Set
the function generator frequency to 1Hz and describe the cuit behaviour.

. l . Slowly increase the frequency and note when each of the thideDs changes from a noticeable
on/o ickering to a steady glow. Estimate from these results, the response time of your eyes.

Lab Report

Submit a lab report consisting of the work undertaken duringhis lab. Start the report with
an overall statement of purpose of the experiments. Then faach exercise include a sketch or
printout of the circuit and graphs of the waveforms observedormula derivations, a description of
the theoretical behaviour of the circuit and comparison wit your actual observations, and answers
to the pertinent questions. The presentation of your resutt should be organized and complete, your
diagrams titled and referenced, so that someone who is notrdiar with the experiments would
have no di culty understanding what was done.

At the end of the lab report, include a brief Conclusions seicin that summarizes and compares
the results from the simulated and hands-on portions of theab and a discussion of any problems
encountered and insights gained.

name (print) student ID lab date grade

Experiment 3

Combinatorial and sequential logic

In combinatorial digital logic circuits the state of the oytuts is determined by the state
of the inputs, and a Boolean logic equation or a truth table madescribe the function
of the circuit in a very compact way. In the sequential logithe state of the inputs at
some earlier time may also matter, and a full desription of éfunction of the circuit
involves a timing diagram, with logic levels, transitionsdiween levels, and their time
relationship presented together. Many circuits combine thoelements.

All digital circuits require some time for an output to respond to a change of state at
the input. This is known as the propagation delay of the cintu This delay needs to be
taken into account in order to to properly analyze circuit beaviour and timing.

3.1 Divide-by-two ip-op

A D ip- op propagates the state of its input D to the

T _ outputs Q and Q at the rising edge of the clock pulse,

= CP. The output is held after CP goes low. In the \feed-

— back" mode, whereQ is connected back td as shown,
gt it will take two clock cycles to return to the initial state.
— Thus a single D ip- op performs a simple divide-by-

O0DODOOOOOOOOOOOD O

iy two.
E . l Assemble the circuit shown. Use the logic analyzer
— to monitor the timing of the divide-by-two oper-
ation. The logic analyzer samples the logic states
Figure 3.1: A :2 ip-op of the input lines at a rate determined by an in-

ternal or external clock. Check by double-clicking

on the analyzer icon that this internal clock is se-
lected and set to a frequency of 5-10 times that of the inputgmals, otherwise you may not
see any meaningful analyzer output.

- l . Add the extra connection between the&Q and the logic analyzer to monitor the second output
as well. Make a record of the analyzer timing diagram.

. l . Increase CP and the analyzer clock to observe and determineetpropagation delayfrom CP
to the Q outputs. Record the analyzer output.

Consider the relationship between the various signals in ¢htwo timimg diagrams. Why does
the timing in the two diagrams seem to di er? Based on your olesvations, write down the

11

12 EXPERIMENT 3. COMBINATORIAL AND SEQUENTIAL LOGIC

truth table for a D ip- op. Compare with that of a real D ip-

by reviewing the device data sheet.

3.2 A binary counter with D ip- ops

op device, such as a 4013,

Several D ip- ops connected in a chain perform as a binary gple counter, each stage undergoing
a change of state half as frequently as the previous one. Ingttircuit, slow the clock down to 1 Hz

or so, and use just a set of LED indicators to read o the binarcount.

- l . Assemble the circuit as shown and verify its operation. You ay want to assemble one binary
digit rst, then select several circuit elements, and Copy ad Paste several times to expand
to more digits. Label the most- and the least-signi cant bis as MSB and LSB, respectively.

O

(—L 20 MHz/50%

Figure 3.2: A binary counter

0000000000000

A
T
—_—
-
T
A
=
F g S
—_—
-_—
-
—_—
-_—
—_—
-_—
—_——

000

Sample @ 500 MHz

The logic analyzer allows you to monitor the output waveforrs and thus to verify the operation
of the counter. Taken together, the fourQ output lines represent a 4-bit binary value; how
does this value change with every transition of the clock? Modoes the value at theQ®°

outputs change? Explain.

Determine the propagation delay for each of the ip/ ops andthen the total propagation
delay of the entire ripple counter of Fig.3.2. What is the mamum clock rate that should be
applied to this circuit? How do the outputs behave as the citgt is overclockedoeyond this
maximum frequency? Explain this behaviour in terms of propggation delays.

Predict the propagation delay of a 10-bit ripple counter. ildw does the propagation delay
a ect the size of a ripple counter? Is this a desirable chargaristic in a counting circuit?

3.3. ONE-OF-EIGHT DECODER 13

3.3 One-of-eight decoder

A key device needed in multiplexing/demultiplexing appliations is a binary to one-of-eight decoder,
similar to the one shown in Figure 3.3.

. l . Assemble the decoder as shown, drive it with the binary coust from the previous section,
and verify that only one of the lights at a time, in sequence, ra turned on by the binary
counter.

Use the analyzer to record the complete timing diagram for #3-bit binary to one-of-eight
decoder, including the clock pulse waveform.

Given that all digital components in EWB exhibit by default a10 ns propagation delay, what is
the propagation delay from the clock to each of the decoder tpuits? Verify this by observing
the analyzer output. How could you decrease the propagatiatelay of the counter/decoder
circuit in Figure 3.3?

Figure 3.3: Binary to one-of-eight decoder

3.4 A design challenge

The challenge is to design an extension of the decoder citcthiat lights a green indicator if and
only if a special sequence (a password) of two 3-bit numbesspresented at the input, and a red
indicator for any other combination of two input numbers.

. l . Sketch a owchart of the logical steps that are required to dee the problem. From this,
develop a timing diagram of the di erent signals that your cicuit needs to generate.

.| Replace the binary counter with the pattern generator. Vefy that you know the pattern
~of 3-bit inputs that turns on any desired light. Note that the Data Ready output of the
pattern generator makes a low-to-high transition when thehte next data word is latched at
the outputs.

14 EXPERIMENT 3. COMBINATORIAL AND SEQUENTIAL LOGIC

Monitor the circuit with the logic analyzer. How does the tining of your circuit compare with
that of your timing diagram?

How would you expand your circuit to decode a series of threeb® numbers?

name (print) student ID lab date

grade
Experiment 4

Oscillators and clock circuits

One does not always have the convenience of a frequency gagaer From simple os-
cillator circuits that provide buzzing tones, to security ystem's delay circuits, to the
crystal-based clocks that provide the heartbeat of everydam computer, a variety of
methods exists to generate oscillating signals. In this lake shall explore some of them.

4.1 555 timer IC as a square wave generator

Additional components required
one 555 timer IC chip

miscellaneous capacitors and resistors

The data sheet for this part describes the various
+15V modes of operation, connection diagrams and resulting
[waveforms. This timer has a monostable, or one-shot,
v .J ‘ mode where a high to low transition on the trigger input
%Rq initiates a single pulse of a speci ¢ duration at the output.
jf OND Voo (0] The circuit can also be con gured as a self-triggering
2] TRI o DS 77— (astable) pulse generator (Figure 4.1). You should pay
V.., Glour THR[6}— particular attention to the charging and discharging equa-
. %Rz tions for the astable con guration of the 555 timer, as they
RES CON determine the duty cycle of the output pulse. The duty
cycle of a digital (on/o) waveform refers to the propor-
tion of the time that the signal is on relative to the overall
—C —— 0.0%wF period of the signal.
- — .1+ Construct the 555 oscillator circuit shown in Fig-
Figure 4.1: 555 Oscillator

ure 4.1. Refer to the internal schematic diagram
shown in Figure 4.2 to understand its operation.
ChooseR1, R,, and C for an output of 1 kHz with as close to 50% duty cycle as you cawerify
that the circuit works and note the values you have chosen. ©ghe digital oscilloscope to
monitor the output signal as well as the voltage at the capattr and record these waveforms.

What is the range in the duty cycle of the 555 output? Considethe changes/additions
that you might make to the circuit to produce output pulses ofa relatively small duration,
for example, a 10% duty cycle.

15

16 EXPERIMENT 4. OSCILLATORS AND CLOCK CIRCUITS

Figure 4.2: 555 bistable oscillator showing internal compents

. l . Explore what happens if you disconnect the control voltageGQV) input pin 5 and instead
connect it to a wiper of a 10-k potentiometer that is conneced between +15V and ground.
This circuit is called a voltage-controlled oscillator.

Comment on the variation in duty cycle as you vary the controloltage. How does the o
time vary with changes in CV? Explain your observation usinghe fact that the oscillation is
based on the exponential discharging of a capacitor.

Review: operational ampli ers

The two triangle shaped devices internal to the 555 chip aregerational ampli ers. The output of
an Op-Amp is given byV, = A (V. V) whereV, andV are the voltages present at the two
inputs and A is the open-loop voltage gain of the Op-Amp. This gain is typally very large, i.e.
A 1, so that a tiny di erence in the input voltages will causeV, to swing between the limits
set by the power supply voltages of th Op-Amp.

In the 555 timer chip, the Op-Amps are used in the open-loop oauration (no feedback) as
voltage comparators. The output of a comparator is high wheN, >V and low whenV, <V .

4.2. CRYSTAL OSCILLATOR AND RIPPLE COUNTER 17

4.2 Crystal oscillator and ripple counter

one 4.096-MHz crystal

1-k and 1-M resistors
10-pf and 39-pF capacitors

Additional components required

one 4060 ripple counter IC chip

<
7
O
N
O
~
o
o
O
i
o

= 4060 C

¢O ¢1 reset O

8 O10 \/DD
U‘U EINEINE Ll_l
i | +15V
MO
1k
4.096MHz
||:||
Ul

S9pF ——— —— 10pF

[o]&
L3]S

Figure 4.3: Crystal-based digital oscillator

Crystal oscillators are available in a variety
of frequencies, which are determined by manu-
facturing them to exacting size and shape spec-
i cations. Often one encounters unusual val-
ues, such as the 4.096-MHz crystal provided
for this lab. The reason for choosing such a
strange value is to be able to generate oscilla-
tions of much lower frequencies by using multi-
stage divide-by-two circuits. It just so happens
that 4096 = 212, and all we need is to build 12
divide-by-two counters in a row to get to 1 kHz,
for example.

A convenient device is a 14-stage ripple carry
binary counter, 4060. Depending on which out-
put one chooses, one can obtain from a divide-
by-2° to a divide-by-2!4. Thus with a single IC
we can generate frequencies as low as 250 Hz,
a convenient frequency if one wishes to build
a small timer circuit with a time resolution of
about 0:002s.

Note how the suggested component values
are selected to ensure a reliable 50%-duty-cycle
oscillation, by keeping the crystal at the mid-
point of the voltage divider formed by the 1 k
resistor and the 39 pF capacitor,i.e. how for
I =2 4:096 MHz

1Zr=1k |] Zc=39pFj:

Also note that since the oscillator components are not dirdg connected to the chip power
supply, the oscillator frequency is not a ected by variatios in the power supply voltage.

| - Download a copy of the 4060 data sheet and review the internathematic. Implement the
circuit shown in Fig. 4.3. Check other outputs as well. Whicloutput stage provides the 1-kHz

signal?

.1 Determine with the aid of a two-channel oscilloscope the ppagation delaytpq for one of the
~ip/ op stages of this ripple counter. Measure also the delg of several (N) stages. Does this
delay represent an integer multiple N of the single stage @glt,q? Should it? How does your
result for tp,g compare with that stated in the data sheet? Explain any notedliscrepancy.

18 EXPERIMENT 4. OSCILLATORS AND CLOCK CIRCUITS

.1 Use HP function generator to provide a 250-Hz trigger sign&b the oscilloscope and monitor
~ the output of your crystal oscillator. HP signal generatorscontain high-precision internal
frequency standards with very low phase drift. Carefully gdst the function generator's
frequency until your oscillator's signal appears completie stable, then wait a few minutes
and observe if the frequency has drifted. See if cooling yoaircuit with a gentle air ow

causes changes.

Why would it be a bad idea to use a 555 circuit as the frequencgwrce for your timer circuit?

name (print) student ID lab date grade

Experiment 5

Building a counter

This experiment explicitly involves several stages of a gia project, from a conceptual
design, to computer-based simulation, to physical implentation and debugging. The
project: a decimal counter. Note that some of the necessargtd is not provided on the
diagrams of this experiment; it is essential that you consuhe appropriate datasheets
directly.

5.1 Building a device, stage by stage

Counting physical events is a common requirement that illdsates well many of the essential ele-
ments of a successful real-life application of electronigauits. It involves:

the physical stage: the closing of a pair of mechanical costa, a change in the illumunation of a
photosensor, a voltage drop that activates a solid-state leyy or a transistor. Here, the issues
of imperfections, of e cient signal transduction (from the physical into the electronic realm),
and of signal conditioning and noise resilience play an imgant role;

the signal processing stage, where the now electronic (lcaj) signal is processed, tallied up,
analyzed or compared with a desired reference condition;

the display and feedback stage, where the results are eithreported to the user, recorded for later
analysis, or used to provide signals to actuators and contrdevices of a physical system. At
this stage the feedback loop back to the physical realm is skd.

Pressing a push-button switch, counting these contact cloges, and displaying the resulting tally
on a seven-segment display are the three stages of this lalpesiment, but this general three-stage
structure is shared by virtually all electronic devices invlved in the interactions with the physical
world.

Sketch a block diagram, representing the way an electronigséem would gather the informa-
tion about the physical world, process it electronically, md implement the resulting control
decision. Brie y describe an example, di erent from this egeriment, that you diagram may
represent.

For your example experiment, indicate the approximate bandidth requirements, or the
amount of information per unit time, that you expect to be conmunicated between the various
blocks on your diagram. Where do you expect the bottlenecks bccur?

19

20

5.2

EXPERIMENT 5. BUILDING A COUNTER

Figure 5.1: EWB circuit diagram

A virtual prototype

A 74192 IC is a convenient decimal counter, capable of reset zero, preloading with a speci ed
value, and of counting both up and down, as well as generatirgrry and borrow signals that allow
one to construct multidigit counters. We will explore only avery limited subset of its capabilities.

Use Electronics Workbenchto simulate the circuit shown in Fig. 5.1. Initially, conne¢ a
74192 and a four-input BCD-decoded seven-segment displapd connect a switch that will
alternately toggle between a/,. and the ground directly to the \Up" pin on the IC. A virtual
switch toggles cleanly and instantly and will require no dé&ouncing.

. Verify the operation of the counter. You may want to add additonal elements such as logic

probes on the outputs of the 74192, to make this task easiereéif using the switch to toggle
the \Down" input of the 74192, while holding its \Up" input hi gh produces the expected
down-counting.

Download from the web, or look up in a data book available in # lab, the datasheet of a
74192. How is the counting by 10 realized inside the IC out obudr ip- ops connected in
series? What is this technique called?

- Now complete the full circuit of Fig. 5.1 by connecting the F5-based debouncer. Choose ex-

ternal RC values so that the width of a pulse generated by the monostatis longer than about
50ms, a typical settling time of a real micromechanical swih. Use the virtual oscilloscope to
verify that your calculations are correct and the pulse widt is as expected.

5.3. CIRCUIT REALIZATION 21

Figure 5.2: A real circuit involves additional details

5.3 Circuit realization

Additional components required

one 555 timer IC

one 74192 decimal counter IC

one 7447 BCD-to-seven-segment decoder/driver

one seven-segment LED, common anode

miscellaneous capacitors and resistors, momentary swiésh

You are now ready to implement the real circuit. In addition b the de-bouncing of the real me-
chanical switches, the magic \BCD-encoded seven-segmeigpay” has to be made out of separate
components: a 7447 encoder/driver IC, current-limiting rgistors, and a common-anode seven-
segment LED display, as illustrated in Fig. 5.2.

. |« Start building the counter circuit, starting with the nal s tage, the LED display. Make sure
~ you have selected a common-anode LED display, and determiitg pinout. The common-
anode requirement is essential, as the 7447 decoder usestieg logic: it sets those segment
lines it wants to activate into the low state. Do not forget toconnect the common anode pin
to the V.. (not shown on the diagram).

The suggested resistor values may not be optimal. Consultéh7447 datasheet, and that of
a typical LED display device, to determine the optimal currat that would make the LED
display as bright as possible yet will not overload the 7447rigler, either by exceeding the
current-carrying capabilities of a single driver line, or ¥ exceeding the total power dissipation
limits for the worst-case scenario of all seven segmentsrgiit at once (the digit \8").

-1+ Add the 74192 counter. Use a TTL square wave from the functiayenerator set to a frequency
of 0.5{5 Hz as the counting input.

INote that our version of Electronics Workbench does not have a common-anode seven-segment display, only a
common-cathode one, so if you were to simulate the circuit ifFig. 5.2, the display would show patterns complementary
to those you would expect for the decimal digits. In the lab, the real common-anode displaysre available, so the
circuit should work as expected.

22 EXPERIMENT 5. BUILDING A COUNTER

Which is the active edge of the counting input? Sketch a timigp diagram for a sequence of
several cycles of the counter, starting with the state of theutputs that represents the decimal
\9", and including all relevant input and output lines.

.1~ Complete the circuit by adding a push-button switch, debouced with the help of a 555

- monostable. Verify a reliable counter operation. Choose ¢hRC values so that the fastest

sequence of pushes of the switch that you can produce does mos$s any and does not have
any extra ones.

Vary the RC until the time constant is too short to provide e ective debaincing and you just
start seeing multiple counts for a single pressing of the pudutton. What is the minimum
pulse width that would provide reliable debouncing?

.|« Time permitting, explore other modes of operation of the 74R. A second switch, debounced
- with another 555-based one-shot, can be connected to the \®o" input, providing two-button
up/down counter. A combination of four bits could be preloadd into the counter by pulsing
on a \Load" input (active low). This is a decimal counter, so @rmally it shows only values
from 0 to 9; what would happen if you pre-loaded a binary-coddour-bit value that is greater
than 9 ?

name (print) student ID lab date grade

Experiment 6

Four-bit multipliers

In this lab, we implement in hardware some algorithms that ritiply two 4-bit numbers
to yield an 8-bit result. The operating speed and hardwarenaplexity of these circuits is
explored.

In digital electronics there are usually several ways to ergss a design in hardware. Generally,
the various approaches to solving the problem involve a trado between the speed of operation
(clock cycles or gate delays) and the hardware complexity ¢ count) of the resulting circuit. To
implement an elementary mathematical operation, namely # multiplication of two 4-bit binary
numbers, several possibilities exist: a brute-force regeaddition with counting, a shift-and-add
scheme similar to the decimal multiplication scheme we lead in the elementary schooletc. Some
algorithms naturally lend themselves to a sequential impheentation, using counters to sequence, or
loop, the hardware a speci ¢ number of times, and an array of ip/ ops known as araccumulator, to
store intermediate results. Some other algorithms are nataily parallel, and their implementations
can be in the form of a purely combinatorial circuit. Hybrid \ersions also exist.

What is the range of binary values that multiplying two 4-bit numbers can yield? How many
bits may be required to store/display the result of such an ggration?

6.1 A summing multiplier

The most basic multiplication algorithm simply involves r@eated addition of a multiplicand, with
the number of times the addition is performed speci ed by a nitiplier, i.e.3 5=5+5+5. A
possible implementation of this algorithm in a 4-bit adder iccuit is shown in Fig.6.1.

For proper operation, any sequential circuit requires:

initialization to some known state; and
a clock to sequence the logic.

In the circuit of Fig.6.1, a low on the reset line clears the aomulator so that the initial sum is
zero. The rising edge of the clock latches the data into the @aemulator, and an add/store operation
is performed each clock cycle. The clock signal can origiealrom a switch that single-steps the
circuit, or automatically from a square-wave oscillator.

To perform the addition of each bit, a full adder is used. Thearry output of each adder ripples
to the carry input of the adder representing the next-mostigni cant bit. The output of the adder
is latched by a D-type ip/ op with clear. The word to be added (multiplicand) provides one input
to the adder; the other input consists of the data currently tored in the accumulator.

23

24 EXPERIMENT 6. FOUR-BIT MULTIPLIERS

Figure 6.1: A 4-bit adder with accumulator

. l . Simulate this circuit. Try some input word values and step tlk circuit repeatedly by hand.
What happens when the 4-bit capacity of the accumulator is eeeded?

Given that the logic components used have a 10-ns propagatiaelay, what is the total
propagation delay for the circuit? Which signal path deterrnmes the operating speed of this
circuit? You might want to use the logic analyzer to monitor he timing relationship of the
various signals.

. l . Increase the frequency of the clock to and beyond the operagi frequency of the circuit so
that a signal race condition occurs. What happens? Does the noted frequencyrag with
your estimate from the propagation delay?

The circuit will continue to add the multiplicand to itself as long as the clock continues to oscil-
late. In this ‘'manual’ mode, you are responsible for countinhow many clock cycles to provide to
implement a particular multiplication operation. In addition, the limited number of bits quickly
produces an over ow condition. We need to address both of tee limitations.

.| Extend the word size of the accumulator to double precisior8(bits). You can do this quickly
by copying and pasting parts of the current circuit and makig the proper connections. Verify
that you can now serially multiply two arbitrary 4-bit numbers by setting the multiplicand
via the four switches and clocking the circuit a number of tiras given by the multiplier.

Replace the manual clocking operation with an automatic oneising D-type latches connected as
a down counter, as shown in Fig.6.2. Note the additions thatdve been made to the 8-bit adder
circuit. The D-latches have active low preset and clear ings. Switches set the 4-bit multiplier
value which is loaded into the counter on reset. The rising géds of the clock pulses decrement the
counter to zero and the circuit is then locked so that no furter changes take place until a reset
pulse restarts the circuit and another multiplication is peformed.

6.2. A SHIFT/ADD MULTIPLIER 25

Figure 6.2: A 4x4 bit summing multiplier

. l . Modify your 8-bit adder circuit to match Fig.6.2 and verify its operation.

. l . Describe using truth tables and timing diagrams the operatin of the logic used to load the
counter with an initial value, and the logic used to lock the iccuit so that a valid result can
be read.

. l . Optional: Simplify this serial summing circuit. Hint: consider how tte upper bits (bits 4{7) of
the multiplicand enter the 8-bit adder circuit, as well as wht happens to the over ow pattern
of bits 0{3.

6.2 A shift/add multiplier

With some minor changes to our 8-bit adder circuit, a more e @&nt multiplication circuit can be
realized. Binary multiplication can be performed in a manneanalogous to the well-known procedure
of decimal multiplication by hand, in which a series of shift and additions | one for every digit
of the multiplier | yield the product. In binary multiplicat ion, this procedure is simpli ed by the
fact that each binary digit has only two possible values, 0 @hl. To perform binary multiplication:

initialize to zero both the accumulator and the loop counter
shift the contents of the accumulator, this is equivalent ta multiplication (or a division) by
2

for each bit of the multiplier in sequence: if the bit is a oneadd the multiplicand to the
accumulator; otherwise skip this stepi.e. add zero;

repeat the above steps until the loop counter has counted threimber of bits in the word.

26 EXPERIMENT 6. FOUR-BIT MULTIPLIERS

Figure 6.3: A 4x4 bit shift/add multiplier

The product is stored in the accumulator.

Fig. 6.3 shows an implementation of a 4x4 multiplier that use a shift/add algorithm. The
circuit is quite complex and we need to spend some time und&msding its operation.

Let us begin by considering the operation of the circuit on eet. With a logic zero on the reset
line, the accumulator and shift counter latches are cleareand the clock circuit is disabled. One
input to the AND gates for bits 4{7 is set high so that the multplier word can pass through the
AND gates to the B inputs of the adders for bits 4{7, where it isadded to the current value in the
accumulator bits 4{7, which are zeros initially. Since bit 7of the accumulator is zero, the AND
gates for bits 0{3 are forced into a low state, setting the oputs of adder bits 0{3 to zero.

When the reset line makes a low-to-high transition, the muiplier word is latched into bits 4{7
of the accumulator, while bits 0{3 are loaded with zeros. AN@ate outputs for bits 4{7 are set to
zeros and the clock circuit is enabled.

Note that each bit in the accumulator is wired to the next-mossigni cant bit of the full adder
array. Hence a left shift operation is being performed evelock cycle. The multiplicand is always
added to the accumulator as a four-bit value, that is, the foumost signi cant bits added are zero.
This is exploited to reduce the total gate count: the four b of the multiplier value can be initially
loaded into the upper four bits of the accumulator without aecting the result as these bits will
have shifted out of the accumulator.

On every low-to-high transition of the clock, the multipliand (or zero, if the appropriate mul-
tiplier bit is zero) is added to the accumulator value and stieed in the accumulator latches. The
deciding condition is the state of bit 7 of the accumulator, Wich of course is reporting each of the
bits of the multiplier as it gets shifted out of the upper fourbits of the accumulator | which had
been pre-loaded there by the reset. Note that the order in wth the multiplier bits are processed
is MSB-to-LSB, as the accumulator contents are shifteteft. At the same time, the shift counter
is incremented. In this case, use of an up counter is prefetalsince no preset logic is required for

6.3. AN ARRAY MULTIPLIER 27

it. A down counter would have to be loaded with the count valueand use some logic to detect a
zero output. When the shift counter reaches four, it sets th©R gate high, disabling further counts
until a reset re-initializes the circuit.

. l . Simulate and verify the proper operation of the shift/add mitiplier circuit. Consider some
improvements to the circuit. For example, you may want to teminate the multiplication
prematurely when one or both of the data words are zero.

Since the multiplier value is set by switches, it is the accunfator value that is being left-
shifted. Choose an arbitrary pair of 4-bit values for the mdiplicand and the multiplier, and
step through an entire multiplication cycle, recording thestate of the accumulator after each
step. ldentify what happens to the multiplier bits, initially at bits 4{7, through the cycle.

An alternate strategy would select the multiplier bit to teg (is it =1 or =0) using a multiplexer
driven by a down counter at its inputs. Sketch the relevant pa of the circuit based on this
idea. Compare this strategy to the one used in the circuit ofif. 6.3.

Compare the summing and the shift/add circuit implementatons. How does the number of
cycles required vary for the two circuits?

Itemize the changes that you would need to make to the two cuis in order to perform an
8x8 multiplication resulting in a 16-bit product. How does he timing and gate count of the
circuits vary with the size of the data word?

6.3 An array multiplier

Consider Figure 6.4, a design for a 4-bit array multiplier. Hre, the four cycles of shift/add oper-
ations have been piggybacked into several stages that perfothe series of operations all at once,
combinatorially rather than sequentially.

. l . Simulate and verify the proper operation of the array multifier circuit.
Does this circuit o er a better performance than the shift/add multiplier?

6.4 Look-up table multiplier

Another possibility, especially when performing complidad arithmetic calculations such as evalu-
ating the sine of an angle, is to use a lookup table. Here, a miatof latches generically known as
storage memory, is loaded with all the possible combinatierof output values for a series of two
input words. To implement a 4-bit multiplier, a memory array of 256 8-bit words is required. The
multiplier sets bits 0{3 of the memory address while the muiplicand sets to bits 4{7. The resulting
product on the output is simply the the data stored at the addess selected by this combination of
two 4-bit inputs.

Evaluate the advantages and disadvantages of using this appch.

28

EXPERIMENT 6. FOUR-BIT MULTIPLIERS

Figure 6.4: A 4x4 bit array multiplier

name (print) student ID lab date grade

Experiment 7

PICLab project board

7.1 Introduction

The vast majority of computers in the world do not run Windows Unix or Linux. They do not
execute word processing or multimedia applications. Thesee the computers that run appliances
such as your television, VCR, microwave, and cell phone. Té&e intelligent devices are known as
embedded processors, microcontrollers or peripheral irfice controllers (PICs). They are used to
perform speci c repetitive tasks that require low computaibnal resources such as disk space or high
throughput video processors, and little or no human intervgion.

In contrast to the typical number crunching desktop compute these devices excel in their ability
to communicate with the world around them. To this end, a miancontroller IC not only implements
the basic arithmetic and logical functions of a typical miaoprocessor, but also includes a variety
of programmable input/output ports, hardware timers, anabg-to-digital converters, and a fast and
e cient means of interrupting the execution of the microconroller program to service a variety of
external or internal events.

A very capable example of a microcontroller is the MicrochiPIC16F877. This 40-pin IC in-
cludes an 8-bit reduced instruction set (RISC) processor thi35 instructions, 8k words of re-writable
(ash) program memory, 512 bytes of scratchpad (RAM) memorand system registers, 256 bytes
of electrically-re-writable (EEPROM) data memory. There @ae 33 programmable input/output
pins, an 8-channel analog to digital converter (ADC), threesvent counters/timers, and a univer-
sal synchronous/asynchronous receiver/transmitter (USRT) capable of communication at up to
1.25Mbits/s. With a 4 MHz clock oscillator, each instruction requires 1 s to execute. The device
will operate at up to 20 MHz and execute ve million instructions per second. This microcontroller
can be programmed in circuit with an in-circuit serial progammer (ICSP) or it can reprogram itself
by downloading a new program via the serial (COM) port of a PCroterminal.

Brock's PICLab microcontroller project boardis compatible with the Microchip PIC16F8xx se-
ries of ICs. This family includes two 40-pin versions, PICEB74/877, and two 28-pin versions,
PIC16F873/876. These chips are functionally identical budi er in the number of input/output
pins, and the size of the program and data memory.

The PICLab project board includes a variety of peripheral ccuits intended to simplify the
development of a microcontroller based project. Includedrea the circuits required to drive a 7
segment LED display, an interface to an LCD display, a keypada serial RS232 or USB interface,
relays and current drivers for the control of external devies and an in circuit programming interface.
There is also a small prototyping area for the inclusion of éa components. The PICLab can be
powered from a 9 V DC \wall wart", a battery, or it can extract power from a computer's USB
port.

A fully assembled PICLab board can operate a& stand-alone deviceA ve button expandable

29

30 EXPERIMENT 7. PICLAB PROJECT BOARD

keypad can be used to input data and control the operation ofie project board. For the display of
output data, a four digit seven-segment LED display can be iized. Alternately, a more elaborate
LCD alphanumeric display of 2 lines of 16 characters each cha used. This \intelligent” display has
its own character memory and is programmed with a set of commds, much like the microcontroller
chip itself. This device might be used as a programmable thapstat, an alarm clock, or a battery
powered portable instrument such as a digital voltmeter.

A PICLab board also can operate as remote device Connected via a serial RS-232 port, or a
much faster USB port, a computer or terminal can accept and siplay the PICLab's output data,
send the PICLab commands, and even change the program thatettmicrocontroller is executing.
Connected to a modem (modulator/demodulator), the PICLab ould send an alert via the telephone
to inform that the system needs attention. This device mightbe interfaced to several motion
detectors and used as an intrusion alarm system or other halld monitoring device, or as a
remote data acquisition module.

The PICLab project board was designed at the Physics Deparent speci cally as a convenient
platform for several experiments in this course. Later on yowill learn the basics of Assembly
language programming, A/D and D/A conversion, and other aspcts of computer assisted data
acquisition and control. In this experiment, you will build your own PICLab workstation, by
assembling (soldering) a project board of your own.

7.2 Pre-assembly review of parts and tools

Be sure to examine the schematics diagram of the project baamprovided separately. You are not
expected to understand all of the details yet, however, youeed to learn to recognize the overall
relationship between what is on the schematics, and its phgal implementation on the project
board. The locations of various components on the printed rcuit board (see below) are well
marked.

Examine, in particular, the keypad part of the circuit diagmam. What should happen when you
press various normally open (N/O) momentary switches? Noteow instead of multiple binary logic
lines to the PIC, multiple switches are connected to a singleDC input. Measuring the voltage on
this line, the PIC can determine which of the switches is presd.

Figure 7.1: A PICLab printed circuit board, version 1.0, thecomponent side

The project board is a high quality double sidedprinted circuit board . The conductive
traces on the berglass substrate are Pre-tinned for ease sdldering and both sides of the board

7.2. PRE-ASSEMBLY REVIEW OF PARTS AND TOOLS 31

are covered with a solder mask to minimize the possibility afolder connections between adjacent
traces. To simplify parts placement, the top or component de of the board is silk-screened with
the various part outlines and corresponding part IDs. All ddering is done on the opposite, or
bottom side of the board.

You will be using version 2.0 of the PICLab board, an updatedforersion 1.0 that no longer
supports the RS232 interface or 28-pin PICs but includes a gotyping area with several types of
surface-mount pads as well as a TLV431 voltage reference tbe A/D converter. Space for two
user-con gurable trimmer potentiometers is also included

Table 7.1: PICLab board v2.0 basic parts list

| [# |item | part ID | circuit | function \
1 | 100 resistor R9 Reset | current limiting resistor
1 | 47K resistor R10 Reset | current limiting resistor
1 | 1IN914 diode, glass D4 Reset | blocking diode during programming
1 | N/O mini switch Sw1 Reset | normally open reset switch
1 | 40 pin IC socket us PIC for PIC 16F877 controller
1 | 20.00MHz crystal Y1l PIC microcontroller oscillator crystal
2 | 22 pF capacitor C5,C6 PIC oscillator capacitors
1 | 0.1 F capacitor C7 PIC decoupling capacitor
1 | 10 pin header J3 PIC ICSP Program interface
1 | 40 pin IC socket ul,uz2 Display | for RT-DDC563DSA 7-segment displays
8 | 330 resistor RN1 Display | segment current limiting resistors
4 | 2N4401 transistor Q1-Q4 Display | 7-segment digit driver transistors
4 | 2.2K resistor R2-R5 Display | transistor base current limiting resistors
5 | N/O mini switch SW2-SW6 | Keypad | normally open keypad switches
1 | 10K resistor R17 Keypad | voltage divider pullup resistor
1 | 4.7K resistor R18 Keypad | SW2 voltage divider resistor
1 | 8.2K resistor R20 Keypad | SW3 voltage divider resistor
1 | 13K resistor R13 Keypad | SW4 voltage divider resistor
1 | 22K resistor R14 Keypad | SW5 voltage divider resistor
1 | 47K resistor R16 Keypad | SW6 voltage divider resistor
1 | 500mA solid state fusg 0.5A PSU yellow disc circuit breaker
1 | red LED LED PSU power on LED, longer lead is + anode
1 | 470 resistor R8 PSU power LED current limiting resistor
1 | 6.00MHz crystal Y2 USB USB interface oscillator crystal
1 | 0.033 F capacitor C10 USB decoupling capacitor
2 | 22 pF capacitor Cl11,C12 | USB oscillator capacitors
1 | 0.01 F capacitor C13 USB decoupling capacitor
1 | 0.1 F capacitor Cl4 USB decoupling capacitor
2 | 27 resistor R11,R12 | USB current limiting resistors
1 | 1.5K resistor R15 USB pull-up resistor
1 | 470 resistor R19 USB resistor
1 | USB B-type connector| USB USB USB cable connector

Table 7.1 lists the components required to assemble a USBwsyed printed-circuit board. These

32 EXPERIMENT 7. PICLAB PROJECT BOARD

component are through-hole parts, inserted and then soldst at their proper location. The PIC
itself, and the two 7-segment LED displays are socketed: theomponents are inserted into the
socket in the nal step of the assembly. Several other compents, such as a voltage regulator and
power jack, are required if the board needs more than 250mA airrent to operate. In this case, a
battery or AC adapter can be used.

Table 7.2: PICLab board v2.0 optional on-board power supplparts list

| [# |item | part ID | circuit | function \
1 | 1.0A solid state fuse | 1A Power | yellow disc circuit breaker
1 | 100 F/10V capacitor | C1 Power | output Iter capacitor
1 | 100 F/25V capacitor | C2 Power | input Ilter capacitor
1 | 1N4004 D1 Power | polarity reversal diode
1 | 3 pin header Power | USB/VDC power select
1| 7805 7805 Power | 5V regulator
1 | Power jack 2.1mm J1 Power | external 9VDC voltage input

Soldering

You will be using a variable temperature soldering stationof all your soldering. Turn on the power
and set the temperature so that the green LEDs light up but nothe red ones. The soldering station
may take a minute or two to reach the selected temperature. W you are waiting, moisten the
tip-cleaning sponge.

The reliability of your project depends greatly on the quaty of your solder connections. Please
review the reference materials on soldering techniques pided on the course web site; they contain
illustrations that may give you a good idea of what is expecte The following guidelines are a brief
summary.

Each time that you make a solder joint, begin by cleaning theip of the soldering iron with
the moistened sponge, then \tin" the iron by applying a smallamount of solder to the tip.
This procedure will result in better transfer of heat from tte iron to the parts to be soldered.

Apply the tip of the iron where the component lead and the PC bard copper trace meet so
that both are heated at the same time. Apply the solder to the sideppositethe tip. Do not
touch the solder with the iron tip. When both the lead and the tace are su ciently hot,
the solder will melt and form a connection. This may take oneradwo seconds. Apply only
su cient solder to cover the joint.

Withdraw the tip without disturbing the solder joint and let the joint cool. A good joint will
be smooth and shiny and show a visibly solid connection beter the copper trace and the
component lead. When insu cient heat is applied to a joint, the solder will fail to ow around
the connection and will bead and form globules, resulting ia \dry" joint. To correct this,
reheat the joint until the solder melts, apply a touch more dder and let cool.

When soldering a two lead component such as a resistor or dgdnsert the component into
the PC board so that it rests ush with the board's surface, tlen slightly bend the leads
outward where they meet the board. Solder both leads and whe&wooled snip o the excess
lead where it meets the solder joint.

7.3. ASSEMBLY OF A PICLAB PROJECT BOARD 33

When soldering a component with several connections such as IC socket, insert the com-
ponent ush with the board and hold it in place as you solder tk corner pins to the board. If
the socket is not properly seated, apply some pressure to tresed region and heat the solder
joint. After you are satis ed that the part is ush with the bo ard, solder the remaining pins.

7.3 Assembly of a PICLab project board

The parts IDs are laid out on the board as text on paper, with tk lowest index at the top left
corner and ID numbers progressing in rows to the lower rightocner of the board. To attach the
various components to the printed circuit board, adhere tolte following assembly sequence. Check
0 each step as it is completed. Note that many components aolarized and require to be placed
on the board in a particular orientation. Follow the philos@hy of checking component placement
twice and soldering once. The removal and replacement of ingperly installed components can be
a tedious, time consuming process and if improperly carriemut, can lead to board damage.

Note: before proceeding with the assembly, thoroughly read the following
instructions in their entirety.

Before soldering any components to the project board, fanatize yourself with the proper
location and orientation of all the components. Verify that you are installing the carect parts as
speci ed in Table 7.1. If you are uncertain as to the value of particular resistor, measure it with
a multimeter. As you go along, you may nd it useful to mark o the steps already completed.

.1+ Locate the 100 reset circuit resistor R9 and verify the vale with an Ohmmeter. Bend the
~ leads at a right angle where they meet the body of the resistolou can do this by applying
pressure to the end of the resistor body with the tip of your mer. Be sure to make a tight
angle otherwise the part will not t into the board. Avoid bending the leads many times as
they will likely break o. With the PC board component side up, install resistor R9 ush
with the PC board, then bend the leads outward to hold the partin place. Turn over the
PC board and solder the resistor leads. Snip the excess leaddthsafter the solder joint has
cooled.

- l . Repeat the procedure to install the 47 K reset circuit resisor R10.

. l . Install diode D4. The diode has a glass body with a thin blackand at one end to indicate
the negative cathode. The band should be oriented in the sand@ection as the part outline
on the PC board. Solder and trim the leads.

.1 - Install the reset switch SW1. The pins have an S shaped bendsilgned to hold the part in

~ place during the automated assembly process. You will need tarefully straighten the pins

of all the switches with pliers so that they can be inserted in the PICLab board. Be sure
that the switch is ush with the PC board, then solder it in place.

- l - Install the 20 MHz PIC oscillator crystal Y1 and oscillator @pacitors C5 and C6.

. l . Install the power LED, noting that the negative side of the dbde is identi ed by the notch at
the base, the LED current-limiting resistor R8 and 500mA sal-state fuse, a small at yellow
disk, at the location marked 'Fuses, 0.5A".

.1+ A three-pin jumper, next to the fuse, can be installed to set¢ the source pf power to the
~ board, either from the USB connection (USB) or from an on-bad power supply (VDC). To
power the board only from the USB interface, connect a piecd wire from the middle hole

to the end hole labeled USB.

34

EXPERIMENT 7. PICLAB PROJECT BOARD

- The location RN1 for the display segment current limiting reistors can accept a resistor

network, an IC that integrates eight resistors in one packagy or discrete resistors. You will
use eight discrete 330 resistors for this purpose. Instakkide by side and solder the eight
resistors at location RN1.

. Install the four 2.2 K resistors R2 to R5 that limit the base current of the transistors Q1 to

Q4.

 The 2N4401 (or 2N3904) transistors Q1 to Q4 must be properlstalled. Hold the transistor

upright with the part number facing you and the three legs faag downward. From left to

right, the legs are identi ed as E-B-C. The placement of theslegs should conform with the
markings on the PC board. Generally, the three legs are clé&amarked on the transistor

body. Add these transistors to the PC board. If yoware not sureas to the proper orientation

of the transistors, ask the instructor.

- Install the ve keypad switches SW2 to SW6.
. Install keypad resistors R17, R13, R14, R16, R18, R20. Be eful to place these resistors at

their proper location, otherwise the keypad will not functon properly. Check their resistance
with an Ohmmeter. The reading should be within a couple of peent of the required value.

. With the project board component side up, insert a 40-pin IC acket for the PIC controller

at location U5 on the board. One end of an IC socket is usuallpdexed with a cutout or
some other identifying mark to properly orient the removald IC in the socket. Be sure that
the socket orientation corresponds with the indexed outli on the board.

+ With the board solder side up and the IC socket ush with the stface of the board, solder

the four corner pins to the board. Check that the socket is pperly seated. If it is not, gently
apply pressure to the socket and apply some heat to the pin toatt the solder and seat the
socket. Solder the remaining pins, being careful to not apptoo much solder and short out
adjacent pins.

. Repeat the above procedure to mount the 40-pin socket for treeven-segment displays Ul

and U2. Here we are using a socket to allow for the displays t@ memovable. Orient this IC
socket with the index mark next to pin 1 of U1.

. Locate the 10-pin header J3 required for in-circuit serialrpgramming. The location is labeled

\ICSP Program". Insert the shorter end of the header strip ush with the board and solder
it in place.

+ The FT232BM USB interface chip has been pre-soldered to theoard. Typically, for proper

installation, a surface-mount component requires a ne4tped soldering iron and very thin
solder as well as the aid of a magni er. Install the other USBelated components: the resistors
R11, R12, R15 and R19, then the capacitors C7 and C10-C14, amally the 6 MHz crystal
Y2, making sure that the metal case does not contact the pad$ G10.

. Install the silver USB-B connector by gently pressing the jgk into the mounting holes while

being careful to make sure that the four small signal wires aiproperly inserted and protruding
from the other side of the board.

Carefully check over the entire board. You can use the illumated magni er to verify that all of the
solder joints are of good quality and that the components ar@astalled at the correct locations and
in the proper orientation. Fig.7.2 shows you what your compted PICLab project board should
look like.

7.4.

PICLAB BASIC FUNCTIONALITY TESTS 35

Figure 7.2: A completely assembled PICLab project board

7.4 PICLab basic functionality tests

Before putting your project board to a practical use, you musverify that all of the board's com-
ponents are functioning as expected. To begin with, alwaystablish that the correct voltage is
present and distributed throughout the board.

Have the instructor check your board before you perform thellowing tests.

Connect a USB cable from the board to the host computer. The UE should light up. If it
does not, the LED may have been inserted backwards. With a woleter, verify that there is
5V DC at the Vdd pin of the PIC expansion bus.

. Test the reset circuit. This circuit sets the voltage at the MCLR pin of the controller. A low

voltage at this pin resets the processor while a level of +5Vups the processor in run mode.
With the Reset switch released, there should be +5V DC preseat the MCLR pin of JP8.
Press the Reset switch SW1. The voltage should drop to OV. Relse the switch to return
the reset line to +5V.

. If the above tests have been successful, remove power frora groject board. Ground yourself

by touching the metal case of an instrument, then install thé’IC microcontroller chip on the

board. Be sure to properly orient the chip in the IC socket. Whout touching the pins,

carefully line up the PIC chip with the socket so that all the pns are lined up with the socket
below. Gently and evenly press the chip into the socket, bajnsure that none of the pins
are out of alignment and being bent, until it is fully seatedn the socket. If the chip resists
installation, see the instructor.

- Install the two dual 7-segment display ICs. Note the correabrientation. The decimal points

of the display should be at the bottom of the display, towardhe PIC. Install the rst display
IC ush with the right side of the socket. The second displays installed ush with the rst.
The two leftmost pins of the socket will remain empty. That isto say, the displays should
appear o set slightly to the right on the socket.

- Noting the correct orientation, install the MAX232 serial nterface chip into the 16-pin socket

following the directions outlined above.

36 EXPERIMENT 7. PICLAB PROJECT BOARD

.|~ Reconnect power to the project board. If the PIC circuit is factioning properly, the PICLab
~ will test the 7-segment display by displaying the number 888 The PICLab will then blank
the display and wait for user input. Press the Reset button. fie PICLab should once again
display 8888, then blank the display. If this happens, the RlLab microcontroller and display
circuits are functioning as expected.

The keypad now needs to be tested. The state of the keypad isceded as speci ¢ voltage levels
at ADC input channel 0. The switches are organized as follows

Sw2 = '2'
SW3 =3 Sw4 ='4 SW5 ="7%5 SW2 + SW3 =1
SW6 = '6' none = '7"'

The keypad test routine veri es that the keypad resistors we correctly installed by displaying
the switch number on the LED display when a switch is pressedlhe following procedure causes
PICLab to enter a diagnostic mode that displays keypad data.

- l . Press and hold one of the keypad switches. Press and reledse teset button. The num-

ber 8888 should be displayed, followed by a number that cosgonds to the keypad button
currently pressed.

.1 - Release the switch. The number '7' should appear. Press eashthe keypad switches in
~ turn and verify that the number corresponding to the switch $ displayed. If the number
output does not match the switch pressed, an incorrectly vaéd resistor has been installed.
Simultaneously press SW2 and SW3; the digit '1' should be gilayed. Press the reset button

to exit the diagnostic routine.

Now you can test the operation of the PICLab USB serial intedce. The PICLab board is
controlled and programmed via a connection to theicl software running on a host computer.
picl can automatically detect the presence of the PICLab board. &e on this later...

.1+ With the PICLab board connected to the host computer, login® your workstation and type
- 'picl' at the command prompt. The picl software should start by opening a 'PICL' window on
your desktop, as well as a 'PIC simulator' window. At the top &ft corner of the 'PICL" window,
an icon displaying a single plug shows that the PICLab board inot currently communicating
with the picl software andpicl software is running as a PICLab simulator. In this mode,
your programs are executed on a virtual duplicate of the PICab hardware.

. l + Check that the port is set to '/dev/ttyUSBOQ'. Click on the connection icon; it should change
to a connected pair of plugs and a message 'Connected to PI@Lat 57600 Baud' should be
displayed in the status box. The 'PIC simulator' window dis@pears.

- l + From the 'Options' menu, click the 'Reset PIC' button. The PICLab board should momen-

tarily display the '8888' and then blank, just as if you had pessed the Reset button on the
board.

Once all of the above tests have been successfully carried and all problems have been resolved,
your PICLab is ready for use.

name (print) student ID lab date grade

Experiment 8

PICLab programming

Brock's own PICLab is the development board package that wibe used in several experiments in
this lab. The microcontroller used in PICLab is the Microchp PIC16F877-20 or PIC16F887. With
a 20-MHz oscillator, most instructions require 200 ns (4 atk cycles) to execute. In addition to
the PIC itself, the PICLab board contains power supply, dislay, and interface circuits necessary to
communicate with the board via a USB port of a Linux workstaton or PC.

PICLab bootloader

A small bootstrap utility program has been pre-loaded into he memory of your PICLab, and a
computer program calledpicl has been written to provide transparent communications wit the
PICLab board.

picl IDE

picl is an Integrated Development Environment of the PICLab boat. It allows you to write
assembler programs, compile and download them to the memao§ the PIC, and to examine the
state of the PIC memory or registers during the debugging peess.picl can also provide a real-time
text and graphical display of data sent by your running progam.

picl also includes a PICLab simulator. Implemented in softwaresimost of the functionality of
PICLab, including the internal hardware of the microcontrdler and the external hardware elements
such as the LED display, keypad, LCD display and serial port.The user subroutines that are
preloaded on PICLab are also simulated in software. Henceywr code developed with the simulator
should run as expected on the real PICLab.

With the simulator you can easily single step through your ate and monitor the outcome of
each instruction. Further, Virtual Pic allows you to view hav an instruction is executed inside the
PIC and the path that your data follows on every cycle of the RT clock.

You can easily switch execution of your code between the sitator and the PICLab board by
making or breaking the PICLab connection.

PICLab schematic

Fig. 8.1 provides an overall block diagram of the PICLab bodr showing the essential connections
between the PIC itself and the other components of the PICLaboard. Together with the picl
help menus and the PIC reference documentation (see the Refgces section of the class website)
this information should be su cient for you to get your PICs to work.

37

38

EXPERIMENT 8. PICLAB PROGRAMMING

Figure 8.1: Block diagram of a PICLab board

39

Connecting PICLab

By default, picl enters the PIC Simulator mode on start-up with the 'Connect'icon showing a
single plug meaning that PICLab is not currently connectedd PICL. With your PICLab board
connected to the USB port of your Linux workstation and the pd set to /dev/piclab , click the
connection icon. The icon changes to two connected plugs, @&ssage 'Connected to PICLab at
57600 baud" appears in the status box, angicl is ready to communicate with PICLab. Check
the 'Auto connect' box in the 'Settings' menu to detect and conect to PICLab on start-up. *

PICLab interface

On your Linux workstation, invoke the graphical user interbce to PICLab by typing:

picl &

Figure 8.2: picl application window, connected to PICLab

Fig. 8.2 shows whatpicl window should look like on your screen. Typically, you enteone or
more opcodes in the entry window and clickBuild]. If the assembly completes without errors,
PICLab loads the given instruction(s) to the Flash program remory and executes them. This code
will not erase if the PIC is reset or the power is turned o . Youcan execute the program currently
stored in the PIC memory by clicking the[Run | button.

As the program runs, PICLab sends a variety of data back to theser. You can open several
windows in the menu to keep track of how the values in the PIC registers and mmory
change as a result of your instructions being executed.

Click the | ?] button for help on the PIC opcodes, assembler directive conamds and a list of
the utility subroutines pre-written for you to use in your programs. Click 'Exit' in the 'File’ menui
when done, your working environment will be saved.

1To program PICLab from your laptop or PC, you need picl and the Tcl/Tk 8.4 interpreter installed; it is freely
available for all platforms at www.activestate.com . You may also need to specify the connection: e.g. /dev/picib
or /dev/ttyUSBn under Linux or COMn under Windows, where n is the desired port. Under Windows, a USB serial
device is identi ed as a COM port.

2By default, the loader chooses 0x0400 as the starting addresof the user program, out of the total program
address space of PIC of 0x0000{Ox1FFF; the loader itself isgsing 0Xx0000{Ox03FF.

40 EXPERIMENT 8. PICLAB PROGRAMMING

8.1 Assembler instructions and code development

You are now ready to begin programming. As you progress thrgh the exercises, be sure to
understand the function of each instruction (see the help ma) and the overall logic of the program

code. Familiarity with the PIC instruction set and with these basic technoques of interacting with
PICLab will make programming the PICLab board a more pleasaible experience.

. l . Start the picl application. Connect to PICLab. In the following steps, thecomments shown
in brackets do not need to be entered; the text can be formatieusing the tab key.

Begin by sending to the PIC an instruction to turn on bit 7 of its Port D. This pin is connected
to the decimal point of the seven-segment displays. In the ey window, input the following
opcode:

bsf PORTD,7 ; set bit 7 of file register PORTD

Click the button. The LED attached to bit 7 of Port D on the PIC should turn on.
Modify the above instruction to read as follows:

bcf PORTD,7 ; clear bit 7 of file register PORTD

Clicking should turn o the LED.

. l - You will now implement a loop. Enter the following code:

begin bsf PORTD,7 ; set bit 7 of file register PORTD
bcf PORTD,7 ; clear bit 7 of file register PORTD
goto begin ; branch to label called "begin”

Since the program is toggling the Port D bit on and o a couple btimes every microsecond,
the LED should appear continuously lit, but somewhat dimmer The PICLab board is now
executing an in nite loop and will not respond to commands.

Connect an oscilloscope to pin 7 dPORTDnN the expansion connector. Sketch and label the
output waveform.

Explain the timing in terms of the PIC instruction executiontimes. Is the timing in agreement
with your expectations?

.1 Press the[Reset] button on the PICLab board to interrupt the program and regan control
of the hardware.

You can slow down the LED ashing rate by introducing a long, m PIC terms, delay after
each of the bit operations. A utility subroutine calledWait is available to implement such a
delay. The Wregister is loaded with a delay value to be passed to the subtme. Try the
following code:

begin bsf PORTD,7 ; set bit 7 of file register PORTD
moviw 250 ; pass delay count to Wait subroutine
call Wait ; execute a delay of 250*150us
bcf PORTD,7 ; clear bit 7 of file register PORTD
moviw 250 ; delay value for Wait subroutine
call Wait ; execute a delay of 250*150us
goto begin ; branch to label called "begin"

The ashing of the LED is now clearly noticeable. Vary the vale in the movlwinstructions
to observe how the ashing rate varies.

8.2. LOOPS, CONDITIONAL BRANCHING, AND CALLS TO SUBROUTINE S 41

8.2 Loops, conditional branching, and calls to subroutines

The next step in our exploration of PIC programming is to add @me ow control to the program's
execution. One possibility is to have the algorithm ash theLED a set number of times, then
terminate and return control to the user. You can use labelsotmake the program more readable.
The equ directive assigns a value to a label. The following code withsh the LED COUNiimes
and terminate.

; Flash.asm: Program to flash LED on and off a specified humbe r of times

COUNT_REG equ 0x20 ; use register 0x20 to count, 0..1F are res erved
COUNT equ 0x10 ; count value to be put into the count register
DELAY equ Oxff ; "Wait" this many tics, ~150us ea

moviw COUNT ; put a count value into the accumulator

movwf COUNT_REG ; put accumulator into the count register
flash bsf PORTD,7 ; turn on LED segment

moviw DELAY ; pass DELAY count to function Wait

call Wait

bcf PORTD,7 ; turn off LED segment

movIiw DELAY ; pass DELAY count to function Wait

call Wait

decfsz COUNT_REG ; decrement count, skip over the next...

goto flash ; ...nstruction when file register=0

Another way to terminate a loop is to check for a certain conton and run until it is satis ed, such
as when the user presses a button. Th8etkey subroutine reads the keypad and returns itwa
value of 2-6 if a button is pressed, otherwise a value of 7 idumed. The STATUS®egister maintains
the state of several ags that can be tested to alter the progm ow. The zero ag Zis set when
the result of an operation is zero, and is cleared otherwise.

.1+ Document the following code and test the algorithm by runnig the program. What does the
- program do? Does the program behave as expected? Consult tiep menu (?) to obtain
more information on the PIC opcodes and utility subroutineghat are available for you to

use.
; Showkey.asm: Program tOcccccoeevvviiiiiiiiiieees i
KEYSAVE equ 0x20 P TRPPPP
clrf PORTD PRSP
readkey call Getkey e ————————
movwf KEYSAVE L e
sublw 7 L e
btfsc STATUS,Z L e
goto readkey | e
movf KEYSAVE,W L e
movwf PORTD e
sublw 2 L e
btfss STATUS,Z PSS
goto readkey | e

return ; required if code follows main program .

42 EXPERIMENT 8. PICLAB PROGRAMMING

In the above example, a simple return from a subroutine (ingiction return) is being used. In
the picl convention, the entire user code is assumed to be a subrowtiof the PICLab loader, and
so at the very end of the code, an automatic return is always serted for you. This is why your
one-line \programs" like bsf PORTD TWorked just ne even though they did not have areturn
operation. However, you must insert an explicit return at tle end of every subroutine that you
yourself write, and at the end of your main program if any codéllows it.

An extra return somewhere in the middle of the code can also be used as a singgbugging
tool. Upon encountering such a \premature" return, the progam will terminate, pass the control
to the PICLab loader, and it in turn will update all of the openwindows ofpicl with the current
values of various registers, memory contentgtc. You will then be able to examine the current
status of your PIC and decide if the code you wrote is doing esidly what you intended it to do.

You may also execute &all Break instruction to update picl with the recent values from the
PIC, and to continue program execution. This subroutine is ot a part of the PIC instruction set,
but is made available through the utility loader function s& You can use the! symbol in a blank
line as a short form forcall Break .

Note: The call Break and! instructions may cause unexpected program behaviour when
placed in your code following a conditional branch instruadbn or as part of a jump table.

In addition to the simple returns, the PIC instruction set has other ow control instructions that
allow one to take some programming shortcuts. For exampladdwf PCL Hnstruction increments
the current program counter (PC) by a value stored in theWregister before proceeding to the
instruction stored at that location. In this way, an indexed goto statement is implemented. The
retliw is a combined load-and-return instruction; it rst loads the Wregister with a literal value and
then exits by executing a return-from-subroutine instrudon.

You can use a lookup table to convert binary data into bit paterns that corresponds to
a decimal digit on the seven-segment display. Determine frothe PICLab schematic the
mapping of PORTPins to the display segments and write down the bit patternshat represent
decimal digits O through 7 on the seven-segment display.

1+ Append the following code to the above program (that is why yoneeded the explicitreturn
- at the end of it) and convert your keypad data by calling theConvert subroutine at an
appropriate time in your program. Explain the program ow of this code. What is the
purpose of theandlw instruction?

Convert andlw 7 L e
addwf PCL,F T
retiw %00111111 ; seven-segment bit pattern for digit "0"
retlw % TR
retlw % R
retlw % R
retlw % TR
retlw % R
retlw % TR
retlw % TR

Each seven-segment display consists of eight LEDs connelctegether at the cathode (-). The
PORTDIns connect to the individual LED anodes (+). With the comman cathode pins of each
display connected to ground, it would require 32 bits to combl the four displays of the PICLab
board.

8.3. MACROS AND SUBROUTINES 43

A more e cient use of resources employs the technique of timeultiplexing to generate an
output on the four displays. Here, the digits are displayedeguentially with only one of the four
digits enabled at anytime. If the switching between digitsg su ciently rapid, the persistence of
the human eye creates the illusion that all the digits are ontahe same time.

Four output pins (PORTBIns 0{3) control the voltage at the display cathodes via cuent-driving
transistors. The corresponding anodes of the four displagse connected in parallel (refer to the
PICLab schematic, Fig. 8.1). A software loop then enables @a of the displays in turn while the
bit pattern corresponding to that digit is presented on thePORTPins. With multiplexing, the pin
count has been reduced to 12 from 32, a saving of 20 input/outppins.

. l . Develop a owchart to multiplex four di erent digits of data on the PICLab display. Convert
the owchart to PIC instructions and test your code.

. l + Vary the loop timing to determine the minimum refresh rate neessary to prevent the display
from ickering.

8.3 Macros and subroutines

A Macro is a group of instructions that are referred to as a sgie new instruction. During assembly,
every time a Macro instruction is encountered, the originajroup of instructions is assembled into
the program.

A subroutine consists of a group of instructions within the ser program that begin with a
subroutine name tt label and end with areturn statement. A call label instruction branches
the program to label and executes the subroutine code until theeturn instruction restores the
program ow to the instruction following the call.

The following code incorporates some practical programngrtechniques to implement a display
multiplexing scheme. A macro de nition is shown as well as aa cient method of implementing a
jump table to select one of several branch possibilities.

. l . Analyse and document the code; explain clearly the functiafity of the subroutines, then
compare the functionality of this program with your version You may want to save your code
into a le (say, Show4.asm before you build and run it. Be sure to add some of your own

code to provide meaningful values t@seg 0 ... 7seg _3, then run the program.
P eeee Show4.asm: multiplex the four-digit seven-segment display
7seg O equ 0x20 ; least significant display digit
7seg_1 equ 0x21
7seqg_2 equ 0x22
7seg_3 equ 0x23 ; most significant display digit
7seg_ptr equ 0x24 ; pointer to current digit displayed.....
Move macro src,dst ; register to register move, modifies W
movf src,W ; the macro defines a new Move
movwf dst ;. instruction that is not available
endm ; as part of the PIC instruction set

; your code goes here, with a call to Scan7seg

44 EXPERIMENT 8. PICLAB PROGRAMMING

return
Scan7seg PP
incf 7seg _Pptr,F o,
moviw 3 L e
andwf 7seg_ptrF
moviw 0xfO L e
andwf PORTB,F L
call Show7seg L e
iorwf PORTB,F e
return L e
Show7seg L e
movf 7seg ptrW
addwf PCL,F L e
goto ShowO T
goto Showl D e
goto Show?2 e
goto Show3 e
ShowO0 Move 75eg_0,PORTD ; .vovvviiiiiiicieee e,
retlw %00000001 ; bit O selects display 0, active high ..
Showl Move 7seg_1,PORTD ; .ccvvvvviiieee e,
retlw %00000010 § e
Show?2 Move 7seg 2,PORTD ; vovoiiiiiiiiiiiiciiies e,
retlw %00000100 § e
Show3 Move 7seg_3,PORTD ; vvveiiiiiiiiiiiiiieeeee e,

retlw %00001000 L e

The bits of a port are generally assigned various functions you must take care to modify only the
pertinent bits when using byte size instructions. This maskg process requires reading the current
port value, modifying only speci c bits, then writing back the data to the port. Bit manipulation
instructions are not useful when the bit to be modi ed variesas in the selection of the digit to be
displayed.

8.4 Interrupts

You will note that depending on the code that you added, the adive program will initialize the digit
values and display them inde nitely, or you will have implenented a loop that modi es the digit
variables and calls theScan7segsubroutine. In the rst case, the PIC is fully occupied scanimg
the display and can perform no other function; in the secondase the refresh rate is determined by
repeated calls to a subroutine.

The ideal way to execute a periodic sequence of events is t@ @ interrupt. A hardware timer
on the PIC interrupts the program ow every 5ms and executes aall to a user interrupt service
routine (ISR). The ISR code runs in the background independdy of the user program. You can,
with an ISR, update the display variables or wait for input while the Scan7segISR scans the display
at a constant rate. Note that the execution time of the ISR musbe less than the time between
interrupts or your program will hang. With this in mind, your ISR is disabled when the PIC is
reset.

To de ne an interrupt service subroutine that will be rememiered by the PIC until rede ned,
add the #UserISRondirective following your ISR subroutine code:

8.5. ANALOG-TO-DIGITAL CONVERSION 45

#UserlISRon Scan7seg ;set Scan7seg as user ISR and enable int errupt

The ISR routine will only execute while your program is runmg. To test some ISR code, you
can program a one-line instruction (e.g.here goto here) to execute an in nite loop; the ISR
routine will execute until the PICLab board is reset. The uselSR routine can be turned on and
o from within your program with the following instructions :

bcf Flags,USERISR ;reset user ISR flag, disable user ISR
bsf Flags,USERISR ;set user ISR flag, enable user ISR

8.5 Analog-to-digital conversion

The PIC can sample one of eight input channels with a 10-bit selution. To perform an analog-to-
digital conversion (ADC), an input channel is selected. A day follows, to allow the input voltage
to be sampled. A start of conversion ag is set to begin the AD@nd another ag is set when the
conversion is completed. The data is then ready to be used.

The ReadABubroutine performs all of the above tasks. Load théfegister with the number of
the input channel and call the routine. After 50 s, the lower eight bits of data are returned in the
WLlIe register and the two most signi cant bits are in WHThe Getkey routine reads A/D channel 0
and uses the three most signi cant bits of the converted vakito determine which key was pressed.

.1+ picl has prede ned pointers to the 7-segment LED displays calldigit0..Digit3 , a subrou-

- tine equivalent to Scan7segcalled Refresh and a routine LedTable, similar to your Convert
routine, that converts a value 0-OxOF contained inMto the 7-segment pattern for the corre-
sponding hex digit. For convenience and to make your code neocompact, use these as part
of your programs.

The following code reads a 10-bit value from the A/D convertechannel connected to the
keypad and displays it as three hexadecimal digits on the LEBisplay. Complete the missing
code and verify that the program functions as expected:

#UserlISRon Refresh ;define LED display scanning routine as user ISR
bsf Flags,USERISR ;enable execution of user interrupt rout ine
begin ;select the keypad channel

.......... ;read 10-bit A/D value, store in WH:WL
.......... ;place lower 8 bits of 10-bit A/D value in W
.......... ;set bits 4-7 to zero, bits 0-3 are A/D bits 0-3

call LedTable ;convert value in W to 7-segment hex digit
movwf Digit0 ;display hex digit for A/D bits 0-3
swapf WL,W ;place swapped nibbles (hex digits) from WL into W

.......... ;set bits 4-7 to zero, bits 0-3 are A/D bits 4-7
.......... ;convert value in W to 7-segment hex digit
.......... ;display hex digit for A/D bits 4-7

.......... ;place upper 2 bits of 10-bit A/D value in W
.......... ;convert value in W to 7-segment hex digit
.......... ;display hex digit for A/D bits 8-9

.......... ;loop code

46 EXPERIMENT 8. PICLAB PROGRAMMING

8.6 Utility subroutines and data output

There are several pre-loaded subroutines available for use part of your programs. Click on the
help menu '?', and browse the 'Routines’ subdirectories. Yoshould become familiar with these
routines; they are bug-free and will make your programmingask much easier.

Several of these routines make the output and conversion ddtd a simple matter. For example,
the Bin2BCDroutine takes the 16-bit binary value stored in the le regiters WHand Wland converts
it to a ve-digit signed or unsigned decimal value stored in egistersDec0O-Dec4 The BCD2LED
routine converts and outputs this result to the 7-segment dplay. Alternately, the contents of
Dec0-Dec4can be sent to the 'PICLab output' window inpicl as an ASCII® string by calling the
BCD2TCioutine, or to the LCD display by calling the BCD2LCiutine. The PICLab LCD display
uses the ASCII character set. These routines require paratess to be set prior to execution.

To send topicl a single ASCII character stored inW use theTxByte routine. To send a value
in Win the range of 0-9 as the corresponding ASCII decimal chatac, use the TxDigit routine.
The Hex2TClroutine outputs the value inWas a 2-character hexadecimal string, while thBec2TCL
routine outputs the value in Win the valid range of 0-99 as a 2-character decimal string.

The characters sent topicl are stored in a bu er until a newline character ASCII=0x0A, is
received. This is handy when several columns of data need te gent; they will be displayed on the
same line until terminated by a newline character. To sepatayour data values with a space, send
the 'space’ character, ASCII=0x20.

The following code segment outputs the value itH:Was a decimal string to the PICLab output
window:

call Bin2BCD ;convert 16-bit value in WH:WL to decimal strin g
moviw 6 :set field width for BCD2TCL to 6 characters

call BCD2TCL ;send string to TCL buffer

movlw \n ;load W register with ASCIl newline character

call TxByte ;send character, flush buffer to display conten ts

For the following exercises, begin by sketching a owchartf¢éhe logical steps required to perform
the given task, then convert each step to one or more PIC insitctions that will de ne your program.
Be sure to thoroughly document your code. Test your code imlly on the PIC simulator, then
execute your program on PICLab:

1. write a program that reads the keypad channel and displaytbe result as a decimal value O-
1023 on the 7-segment LED display. The value should changeths various keypad switches
are pressed,

2. write a program that outputs three pairs of coordinate paits (1,2), (2,4), (3,8) to the PICLab
output window. The data should appear as an array of three rawby two columns. Click the
button to generate a Gnuplot graph of your data. Check the Lias box to interpolate
the data with line segments;

3. write programs that implement in software the summing andghift/add algorithms used to
multiply two 4-bit numbers that were implemented in hardwae as part of Experiment 6.
Begin by reviewing the arithmetic instructions available 6 the PIC and their e ect on the
carry Cand zeroZ ags contained in the STATU®egister.

SASCII refers to the American Standard Code for Information Interchange, where an 8-bit value is used to
represent the character set of alphanumeric characters a;zA-Z, 0-9 as well as other symbols typically found on a
keyboard, such as ?, +, . Coded in the range of ASCII=0-0x1F,are non-printed control characters.

name (print) student ID lab date grade

Experiment 9

PICLab data acquisition project

This PIC project is meant as a chance for you to put all your sks in digital/analog electronics,
PIC programming/interfacing and practical problem solvirg to use and to build a useful device of
your own. Your project will consist of the following steps:

1. research:

the research cycle involves a preliminary exploration of geible project ideas where the hard-
ware and software implementation options and perceived dgs di culties are considered.
Analyse the evolutionary steps involved in the design pross that need to be successively
ful lled to make your project work; the choice of input sensts, the interpretation and pro-
cessing of the input data, and the output of results or contieignals that are required to give
your design its planned functionality. Consider also the drancements that, time permitting,
could be made to your design to increase the usefulness or aaifities of your project;

2. proposal:
the proposal consists of a written and oral presentation ohe tentative PIC design project
that you have selected. The proposal outlines what you aregining on doing, how you are
planning to do it, and the di culties that you expect to overcome. It should be the end result
of some signi cant amount of time spent thinking about the pactical issues involved in the
implementation of the project, the analysis of several pasée alternative hardware/software
solutions to the problem, speci cally in terms of the meritsof the di erent approaches;

3. development:

this involves the experimental process of attempting and heving the milestones set out
in the design proposal, and will likely involve a mixture of he assembly of mechanical and
electronic components as well as software programming. Arpaf this process involves the
resolution of problems, expected and unexpected, that agigluring the development of any
prototype system. A detailed, dated documentation of the delopment process must be
preserved. This is a record of the steps undertaken to accolsp the end result, as well as
the design choices that were attempted but proved to be unsuessful;

4. presentation:
as a nal step, you will make an oral presentation consistingf a demonstration of the working
project and a description of its operation. The presentatio concludes with an assessment of
your nal result in terms of the goals set out in the project ppposal. You should have available
for submission a printed copy of your design records as wefl a user manual that describes
the device opeartion and includes hardware schematics anoftavare code.

Below are several simple ideas, you are welcome to suggeshalar project of your own for approval
by the instructor.

a7

48 EXPERIMENT 9. PICLAB DATA ACQUISITION PROJECT

9.1 A PID temperature controller

One of the simple ways of controlling semi-continuously thstate of a system is through the ad-
justment of the ratio of on/o times. For example, if the temperature of a reservoir is below the
target temperature, we turn the heater on, and if it exceedshe target temperature, we turn the
heater o . A temperature sensor and a TTL relay acting as the pwer switch for the heater under
the control of a microprocessor is enough to implement a siteptemperature controller. However,
a truly intelligent controller would implement the so-caled PID (Proportional-Integral-Derivative)
control algorithm, whereby the temperature di erence withthe target temperature (P), the time
integral of temperature (I) and the time rate of change of temerature (D) are all monitored and
the output is controlled by all three, with varying-weight contributions. The reasoning is simple:
a purely Proportional control always overshoots the targeand, depending on the thermal inertia
of the heater, may end up always oscillating about the targeiemperature. Including the other
contributions (I,D) can produce an approach to the target teperature that is free of overshooting,
and maintain a stable target temperature. A further improvenent is to automatically adjust the
relative weights of the P,I, and D contributions, to maintan this stability even if the thermal inertial
properties are changing, for example as the level of the uiih the reservoir is changing.

9.2 An ultrasonic pinger

First developed for distance measurement in autofocus caras, ultrasonic distance measurement
is based on a simple time-of- ight measurement for an ultrasic sound pulse. It can be used to
measure distances with high precision (2mm is typical), using a standard ultrasonic transceiver
(both a transmitter of the pulse, and a receiver of the echo gial from a distant object) and
a timer-counter that measures the time between the sending the pulse and the receiving of the
echo. With proper calibration (the speed of sound in the airaries with temperature and humidity),
a transceiver interfaced to a microcontroller is an excefte distance measuring device. It can be
used in a Mechanics lab, or for non-contact level measuren®nn a well, or as a parking guide
device in tight spaces.

9.3 A chaotic dripping tap

The incessant drip-dripping sounds of a leaky tap drive us sane late at night, but a precise
measurement reveals that the time interval between drips Emost never perfectly periodic. In fact,
drop formation is in uenced by a number of factors, includig the size of the previous drop. As a
result, the dripping tap is an example of a chaotic system, @na variety of dynamic measurements
can be performed, demonstrating period-doubling, attraots, and other features typical of the
dynamics of chaos. An infrared LED/detector pair interfacd to a microcontroller is su cient to
perform time-between-drips measurements that can be loghand analyzed.

9.4 A universal digital knob

There is a distinct advantage to being able to \turn a knob" tocontrol something; there is a tactile
feedback that tends to feel natural to the operator, and redies the error rate. However, analog
knobs, based on variable resistors or capacitors have limit range, and are mechanically unreliable;
they are also quite expensive. On the other hand, an electiioally-controlled counter that uses

9.5. AN LCD BAR-GRAPH 49

up/down buttons is awkward to manipulate and provides no tatile feedback. One interesting
compromise can be realized if a digital rotary encoder can hesed to control a digital register
value. In general, these devices generate a series of pulsg tan be used to increase/decrease a
counter value; in the best designs, some accounting of theesgl of the turning is made, so that
slowly turning the shaft produces individual pulses, whiléurning it more rapidly also increases the
\step size", generating more pulses per unit rotation, a fon of adaptive \ballistic" control. One of
the most inexpensive ways to implement such a universal digi knob is by interfacing a stepping
motor from an old oppy drive to a microcontroller.

9.5 An LCD bar-graph

A companion project to the previous one is a way to display thealue of a register as a simulated
bargraph, using the special block graphics characters aledle on an LCD display interfaced to a
microcontroller. Some button action (up/down scrolling through a list of registers, or simply one-
of- ve single-button selection of registers) selects a picular variable/register; the \digital knob"
changes its value, and the LCD displays the name/address difg variable and its value, with a
simulated LCD bargraph providing a visual representation fothe value. As a stand-alone project,
an LCD bargraph could be used as an add-on feature to a stratggrward digital voltmeter.

9.6 A joystick-controlled servomotor

Fly-by-wire controls physically separate the controllerd joystick) and the devices that are perform-
ing the action (servomotors). Instead of mechanical or hydulic linkages, an electronic connection
is made. In an analog joystick, the position controls two vaable resistors &{ and y{directions)
and in a digital one, it e ectively presses one of four swit@s, one for each ok, y, x, and vy
(or eight, if each direction has two positions, indicating &lf and full strength). This information
is processed by a microcontroller and converted into an elemnic signal that is then sent to a
remote microcontroller that in turn uses it to control the siate of an action device. Along the way,
the command signal may be manipulated in some way, for exameplo ensure that an unstable or
a dangerous con guration is not accidentally requested by aser, or that all transitions from one
state to another are optimally smooth and do not exceed a caih rate of change (in an aircraft this
might result in a dangerous-to-pilotg-force). A single microcontroller with a joystick at its input
and a servomotor at its output is enough to create a simple Yy-wire controller that demonstrates
most of the essential features of such a system.

9.7 Decoding an infrared remote control

Infrared pulses can be used to carry signals wirelessly assashort distances in line-of-sight con g-
urations. These are used in a variety of devices, from TV rertecontrols, to shared o ce printers,

to toys such as the Furby, capable of some form of communicati with its own kind. To build or
debug an IR-enabled communications device it is useful tovea decoder of what these devices are
sending through the IR, into a sequence of readable ASCII cesl A more ambitious project would
involve two-directional communications, both reading whiathe other IR transmitter is sending,
and sending one's own signals out. This is easily implemedteasing a microcontroller; this is what
is at the heart of all \universal programmable” remote contols that are widely available. With

50 EXPERIMENT 9. PICLAB DATA ACQUISITION PROJECT

a microcontroller-based decoder/encoder attached to a sdrport, you can make your computer
communicate with all such devices, and to replace all of yowemote controls with a software one.

9.8 A PIC-based mouse controller

A typical electromechanical pointing device (a mouse) has large rubberized ball rolling on the
work surface and in turn rotating two orthogonal slotted whels, one for thex- and one for the
y-motion. Each slotted wheel interrupts two infrared beamsproducing a pair of logical pulses, 90
out-of-phase. Each pair of pulses corresponds to a step o$mlacement, and their relative phase
determines the direction of motion. Typically, these TTL signals are convaed by a dedicated
mouse controller IC into a stream of codes sent through a sa&riconnection to the computer,
reporting the displacement of the mouse. The same task coubd performed in software running
on a microcontroller. In this way, non-standard display moes (for example, direction and velocity
display) could be programmed. If a suciently ne resolution can be obtained, the two-wheel
interface could be adapted to display in real time the actiowf a chaotic two-pendulum magnetic
toy, or to the monitoring/control of a model Foucault penduum. For the latter, useful pointers are:

Richard Crane's article in the References section on the PEY2P32 website
http://en.wikipedia.org/wiki/Foucault _pendulum
http://www.iop.org/EJ/article/0031-9120/19/6/412/pe v19i6p294.pdf
http://www.sas.org/E-Bulletin/2002-04-26/handsOnPhy s/body.html

name (print)

student ID lab date grade

Appendix A

Breadboards

Breadboards permit quick solderless connections betwedmetcomponents of an electronic circuit.
As indicated in the diagram, the holes of the breadboard areplit into parallel sets of ve (5).
Within each hole is a metal clip to hold a wire and the clips in@&ch set are connected together.

A Extended Rows

SN /

7
00000 OOOOCNOOODO 00000 GOOOO/
00000 0O000CO 00000 00000 00000 O0O0O00O0

Set of five
connectors

00000 0OO0O0O0O0 0O0QO0O0 00000

00000
%OOOOD O 0000 OOOOONOOOOO 00000 00000
4

/ \

Extended Rows B

Two wires can be connected electrically by placing their esdnto two holes belonging to the
same set of 5 holes. The connector sets in the outside rows éndeen joined together to form four
(4) extended rows. (Some breadboards do not have connectat points A and B resulting in eight
\half" rows.) These outside rows are often used to supply p@w to the board. After an external
power supply has been connected to one of these rows, powaer lsa withdrawn to supply electronic
circuits at any location along the board.

Each of the breadboards you will use is assembled on a plugtinit that ts into one of the
connectors on the common backplane. On this backplane youveaaccess to ve pairs of banana
jacks (red and black), and ve coaxial BNC connectors. All ldck banana jacks and the outside
contacts on the BNC connectors are grounded and are thus dlezally equivalent. The red banana

plugs and the center conductors of the BNC connectors are atluted to each of the plug-in bread-
board modules. In addition, 15V, +5V, and OV DC power connections are also available on @a
breadboard. Fig. A.1 shows the location of the common conniens on the breadboards.

51

52 APPENDIX A. BREADBOARDS

BNCT BNCZ2 BNC3 BNC4 BNCS

O O CL O CL O Cg O &

BP1 BP2 BP3 BP4 BPS
All BNC, BP connections
have a common ground

Power connections extend e
only to middle of board

)

Pins are grouped in rows
of five

—15V o +15V
(Gnd) OV —— L 45V

Figure A.1: Layout of common connections on the breadboards

The banana plugs and the BNC connectors are used to connecethomponents on the bread-
board to the external devices such as meters, scopes, andchion generators. You should not
connect wires directly between the breadboard and an extexhdevice; it is unsafe. The proper
breadboarding technique is illustrated in Fig. A.2.

°f

fbo
0000000000 deeod

| :

7

Figure A.2: The proper breadboarding technique

53

name (print) student ID lab date grade

Appendix B

Resistor Colour Code

st 2nd 3rd 4th

BANDS
| Colour | First Band | Second Band | Third Band |
Black 0 0 10
Brown 1 1 10
Red 2 2 107
Orange 3 3 1¢°
Yellow 4 4 104
Green 5 5 10
Blue 6 6 10°
Violet 7 7 10/
Gray 8 8 16
White 9 9 10°
Gold - - 101
Silver - - 10 °
Silver is 10% tolerance
Fourth Band: Gold is 5% tolerance

No band is 20% tolerance
For example, the resistance of a resistor whose bands are,restl, red, silver is

22 10¢! 22k 10%

54

name (print) student ID lab date grade

Appendix C
Plotting with physica

An integral part of every lab is an analysis of the results, ahit is best done with the help of a
scienti ¢ visualization/plotting/ tting computer progr am. There is a large number of such programs
for di erent computing platforms. If you are comfortable usng one such package already, you may
use the software you already know. However, bear in mind that

the software must be able to perform multi-parameter non+tiear ts, and a proper statistical
evaluation of convergenceglg ?);

you must bring your own laptop computer to the lab;
the instructor may not be able to help, not being familiar wit the quirks of your software.

What is made available to you in the lab is a powerful scientt plotting and tting package called
physica , written at the TRIUMF accelerator in Vancouver, BC. This is the recommended software
for use in the analysis of experimental data and in the prepation of lab reports, theses, and
scienti ¢ articles.

The main physica \engine" is an \old-fashioned" piece of software in the seesthat it has a
command language and requires typing of commands at the prpmand not clicking a mouse and
using visual widgets. On the other hand, it is easy to learntd numerical engine is an extremely
powerful one, and a macro language allows you to automate nyatasks using only a text editor. In
order to harness the full power ophysica you may need to spend some time learning its command
language.

In addition, Physica Onlineis a web-based interface intghysica which may prove adequate
for most tasks. It is fairly self-explanatory and can be inked by pointing a web browser to

www.physics.brocku.ca/physica/
For more advanced tasks, the web-basdehysica Online provides the \expert mode" which does
allow access to full capabilities ophysica .

A stand-alone version oPhysica Onlineis also installed on all the Linux machines in the Physics
cluster under the name oPhysicalLab. It is a local Tcl/Tk script that acts as an interface into the
same \engine" that drives the web-basedhysica Online

Recently, a new, graphical user interface version physica calledeXtrema has become available
from exsitewebware.com/extrema/ , in both Linux and Windows versions. You may want to
download and install it on your home computer.

On-line physica tutorial

A quick way to get into physica is through the on-line tutorial created here at Brock.

55

56

PLOTTING WITH physica

log on to a Linux workstation;

open a web browser and an 80x24 shell window (a terminal icosifle-by side; point the web
browser to
www.physics.brocku.ca/doc/physica/

and type physica in your shell window; a separate graphical output window wlilopen up,
and the shell window will display thePHYSICAprompt; proceed at your own pace.

You will likely want to use your favourite text editor to create small macro command les.
You may want to arrange all windows side-by-side for convesrice. Remember taot resize
the graphics window ofphysica with a mouse (use aresize command at the PHYSICA:
prompt).

