next up previous contents
Next: Analog multiplier Up: Advanced op-amp designs Previous: Instrumentation amplifier

Logarithmic amplifier

Using a non-linear feedback element with an op-amp (e.g. a pn-junction diode) produces startlingly different transfer functions. Logarithmic amplifiers serve as the basis for circuits such as analog multipliers studied in Section 4.6.

$\textstyle \parbox{2.0in}{\raisebox{-1.25in}{\par
\hbox{\hskip 0in \vbox to 1.25in{\includegraphics[height=1.25in]{FIGS/fig4.7.ps}\vfill}}}}$ $\textstyle \parbox{3.0in}{%
Carefully balance a 351 op-amp. Then wire the logarithmic amplifier (log amp),
using a signal diode as the feedback element.
}$

Measure $V_{\rm out}$ as a function of $V_{\rm in}$ and $R_{\rm in}$:
$V_{\rm in}$ $R_{\rm in}$ $I_{\rm in}$ $V_{\rm out}$
10.0mV 1M$\Omega$    
10.0mV 100k$\Omega$    
100.0mV 100k$\Omega$    
1.0V 100k$\Omega$    
10.0V 100k$\Omega$    
10.0V 10k$\Omega$    

Plot $\log I_{\rm in}$ vs. $V_{\rm out}$.

For all but very small forward bias voltages, the current through a diode varies exponentially with the applied voltage:

\begin{displaymath}I \simeq I_i e^{eV/\eta kT} \end{displaymath}

where $\eta$ is an empirical parameter ($\sim 2$ for Si, 1 for Ge diodes), and $I_i$ is the intrinsic current at zero bias.

Apply circuit analysis (Simpson, Sec. 9.7) to your logarithmic amplifier and verify that the same relationship holds for the measured $I_{\rm in}$ and $V_{\rm out}$.

Fit your data to the above equation and determine the parameters $\eta$ and $I_i$ for your diode. Can you tell if this is a Si or a Ge diode?


next up previous contents
Next: Analog multiplier Up: Advanced op-amp designs Previous: Instrumentation amplifier

For info, write to: physics@brocku.ca
Last revised: 2007-01-05