
Experiment 5

PICLab programming

Brock’s own PICLab is the development board package that will be used in several exper-
iments in this lab. The microcontroller used in PICLab is the Microchip PIC16F877-20
or PIC16F887. With a 20-MHz oscillator, most instructions require 200 ns (4 clock
cycles) to execute. In addition to the PIC itself, the PICLab board contains power sup-
ply, display, and interface circuits necessary to communicate with the board via a USB
port of a Linux workstation or PC. The goal of this lab is to learn how to add operating
softwaer to this hardware platrform.

PICLab bootloader

A small bootstrap utility program has been pre-loaded into the memory of your PICLab, and a
computer program called picl has been written to provide transparent communications with the
PICLab board.

picl IDE

picl is an Integrated Development Environment of the PICLab board. It allows you to write
assembler programs, compile and download them to the memory of the PIC, and to examine the
state of the PIC memory or registers during the debugging process. picl can also provide a real-time
text and graphical display of data sent by your running program.

picl also includes a PICLab simulator. Implemented in software is most of the functionality of
PICLab, including the internal hardware of the microcontroller and the external hardware elements
such as the LED display, keypad, LCD display and serial port. The user subroutines that are
preloaded on PICLab are also simulated in software. Hence, your code developed with the simulator
should run as expected on the real PICLab.

With the simulator you can easily single step through your code and monitor the outcome of each
instruction. Further, Virtual Pic allows you to view how an instruction is executed inside the PIC
and the path that your data follows on every cycle of the PIC clock.

You can easily switch execution of your code between the simulator and the PICLab board by
making or breaking the PICLab connection.

29

PICLab schematic

Figure 5.1: Block diagram of a PICLab board

Fig. 5.1 provides an overall block diagram of the PICLab board, showing the essential connections
between the PIC itself and the other components of the PICLab board. Together with the picl

help menus and the PIC reference documentation (see the References section of the class website)
this information should be sufficient for you to get your PICs to work.

30

Connecting PICLab

By default, picl enters the PIC Simulator mode on start-up with the ’Connect’ icon showing a
single plug meaning that PICLab is not currently connected to PICL. With your PICLab board
connected to the USB port of your Linux workstation and the port set to /dev/piclab, click the
connection icon. The icon changes to two connected plugs, a message ’Connected to PICLab at
57600 baud” appears in the status box, and picl is ready to communicate with PICLab. Check
the ’Auto connect’ box in the ’Settings’ menu to detect and connect to PICLab on start-up. 1

PICLab interface

On your Linux workstation, invoke the graphical user interface to PICLab by typing:

picl &

Figure 5.2: picl application window, connected to PICLab

Fig. 5.2 shows what picl window should look like on your screen. Typically, you enter one or more
opcodes in the entry window and click Build . If the assembly completes without errors, PICLab
loads the given instruction(s) to the Flash program memory and executes them.2 This code will not
erase if the PIC is reset or the power is turned off. You can execute the program currently stored
in the PIC memory by clicking the Run button.
As the program runs, PICLab sends a variety of data back to the user. You can open several
windows in the View menu to keep track of how the values in the PIC registers and memory
change as a result of your instructions being executed.
Click the ? button for help on the PIC opcodes, assembler directive commands and a list of the
utility subroutines pre-written for you to use in your programs. Click ’Exit’ in the ’File’ menui
when done, your working environment will be saved.

1To program PICLab from your laptop or PC, you need picl and the Tcl/Tk 8.4 interpreter installed; it is freely
available for all platforms at www.activestate.com. You may also need to specify the connection: e.g. /dev/piclab
or /dev/ttyUSBn under Linux or COMn under Windows, where n is the desired port. Under Windows, a USB serial
device is identified as a COM port.

2By default, the loader chooses 0x0400 as the starting address of the user program, out of the total program
address space of PIC of 0x0000–0x1FFF; the loader itself is using 0x0000–0x03FF.

31

5.1 Assembler instructions and code development

You are now ready to begin programming. As you progress through the exercises, be sure to
understand the function of each instruction (see the help menu) and the overall logic of the program
code. Familiarity with the PIC instruction set and with these basic technoques of interacting with
PICLab will make programming the PICLab board a more pleasurable experience.

�
�	! Start the picl application. Connect to PICLab. In the following steps, the comments shown
in brackets do not need to be entered; the text can be formatted using the tab key.

Begin by sending to the PIC an instruction to turn on bit 7 of its Port D. This pin is connected
to the decimal point of the seven-segment displays. In the entry window, input the following
opcode:

bsf PORTD,7 ; set bit 7 of file register PORTD

Click the Build button. The LED attached to bit 7 of Port D on the PIC should turn on.
Modify the above instruction to read as follows:

bcf PORTD,7 ; clear bit 7 of file register PORTD

Clicking Build should turn off the LED.�
�	! You will now implement a loop. Enter the following code:

begin bsf PORTD,7 ; set bit 7 of file register PORTD

bcf PORTD,7 ; clear bit 7 of file register PORTD

goto begin ; branch to label called "begin"

Since the program is toggling the Port D bit on and off a couple of times every microsecond,
the LED should appear continuously lit, but somewhat dimmer. The PICLab board is now
executing an infinite loop and will not respond to commands.

Connect an oscilloscope to pin 7 of PORTD on the expansion connector. Sketch and label the
output waveform.

? Explain the timing in terms of the PIC instruction execution times. Is the timing in agreement
with your expectations?�
�	! Press the Reset button on the PICLab board to interrupt the program and regain control
of the hardware.

You can slow down the LED flashing rate by introducing a long, in PIC terms, delay after
each of the bit operations. A utility subroutine called Wait is available to implement such a
delay. The W register is loaded with a delay value to be passed to the subroutine. Try the
following code:

32

begin bsf PORTD,7 ; set bit 7 of file register PORTD

movlw 250 ; pass delay count to Wait subroutine

call Wait ; execute a delay of 250*150us

bcf PORTD,7 ; clear bit 7 of file register PORTD

movlw 250 ; delay value for Wait subroutine

call Wait ; execute a delay of 250*150us

goto begin ; branch to label called "begin"

The flashing of the LED is now clearly noticeable. Vary the value in the movlw instructions
to observe how the flashing rate varies.

5.2 Loops, conditional branching, and calls to subroutines

The next step in our exploration of PIC programming is to add some flow control to the program’s
execution. One possibility is to have the algorithm flash the LED a set number of times, then
terminate and return control to the user. You can use labels to make the program more readable.
The equ directive assigns a value to a label. The following code will flash the LED COUNT times
and terminate.

; Flash.asm: Program to flash LED on and off a specified number of times

COUNT_REG equ 0x20 ; use register 0x20 to count, 0..1F are reserved

COUNT equ 0x10 ; count value to be put into the count register

DELAY equ 0xff ; "Wait" this many tics, ~150us ea

movlw COUNT ; put a count value into the accumulator

movwf COUNT_REG ; put accumulator into the count register

flash bsf PORTD,7 ; turn on LED segment

movlw DELAY ; pass DELAY count to function Wait

call Wait

bcf PORTD,7 ; turn off LED segment

movlw DELAY ; pass DELAY count to function Wait

call Wait

decfsz COUNT_REG ; decrement count, skip over the next...

goto flash ; ...instruction when file register=0

Another way to terminate a loop is to check for a certain condition and run until it is satisfied, such
as when the user presses a button. The Getkey subroutine reads the keypad and returns in W a
value of 2-6 if a button is pressed, otherwise a value of 7 is returned. The STATUS register maintains
the state of several flags that can be tested to alter the program flow. The zero flag Z is set when
the result of an operation is zero, and is cleared otherwise.�
�	! Document the following code and test the algorithm by running the program. What does the

program do? Does the program behave as expected? Consult the help menu (?) to obtain
more information on the PIC opcodes and utility subroutines that are available for you to
use.

33

; Showkey.asm: Program to ...

KEYSAVE equ 0x20 ;

clrf PORTD ;

readkey call Getkey ;

movwf KEYSAVE ;

sublw 7 ;

btfsc STATUS,Z ;

goto readkey ;

movf KEYSAVE,W ;

movwf PORTD ;

sublw 2 ;

btfss STATUS,Z ;

goto readkey ;

return ; required if code follows main program .

In the above example, a simple return from a subroutine (instruction return) is being used. In the
picl convention, the entire user code is assumed to be a subroutine of the PICLab loader, and so at
the very end of the code, an automatic return is always inserted for you. This is why your one-line
“programs” like bsf PORTD 7 worked just fine even though they did not have a return operation.
However, you must insert an explicit return at the end of every subroutine that you yourself write,
and at the end of your main program if any code follows it.

An extra return somewhere in the middle of the code can also be used as a simple debugging tool.
Upon encountering such a “premature” return, the program will terminate, pass the control to the
PICLab loader, and it in turn will update all of the open windows of picl with the current values
of various registers, memory contents, etc. You will then be able to examine the current status of
your PIC and decide if the code you wrote is doing exactly what you intended it to do.

You may also execute a call Break instruction to update picl with the recent values from the
PIC, and to continue program execution. This subroutine is not a part of the PIC instruction set,
but is made available through the utility loader function set. You can use the ! symbol in a blank
line as a short form for call Break.

Note: The call Break and ! instructions may cause unexpected program behaviour when placed
in your code following a conditional branch instruction or as part of a jump table.

In addition to the simple returns, the PIC instruction set has other flow control instructions that
allow one to take some programming shortcuts. For example, addwf PCL F instruction increments
the current program counter (PC) by a value stored in the W register before proceeding to the
instruction stored at that location. In this way, an indexed goto statement is implemented. The
retlw is a combined load-and-return instruction; it first loads the W register with a literal value and
then exits by executing a return-from-subroutine instruction.

? You can use a lookup table to convert binary data into bit patterns that corresponds to
a decimal digit on the seven-segment display. Determine from the PICLab schematic the
mapping of PORTD pins to the display segments and write down the bit patterns that represent
decimal digits 0 through 7 on the seven-segment display.

34

�
�	! Append the following code to the above program (that is why you needed the explicit return
at the end of it) and convert your keypad data by calling the Convert subroutine at an
appropriate time in your program. Explain the program flow of this code. What is the
purpose of the andlw instruction?

Convert andlw 7 ;

addwf PCL,F ;

retlw %00111111 ; seven-segment bit pattern for digit "0"

retlw %________ ;

retlw %________ ;

retlw %________ ;

retlw %________ ;

retlw %________ ;

retlw %________ ;

retlw %________ ;

Each seven-segment display consists of eight LEDs connected together at the cathode (-). The
PORTD pins connect to the individual LED anodes (+). With the common cathode pins of each
display connected to ground, it would require 32 bits to control the four displays of the PICLab
board.
A more efficient use of resources employs the technique of time multiplexing to generate an output
on the four displays. Here, the digits are displayed sequentially with only one of the four digits
enabled at anytime. If the switching between digits is sufficiently rapid, the persistence of the
human eye creates the illusion that all the digits are on at the same time.
Four output pins (PORTB pins 0–3) control the voltage at the display cathodes via current-driving
transistors. The corresponding anodes of the four displays are connected in parallel (refer to the
PICLab schematic, Fig. 5.1). A software loop then enables each of the displays in turn while the
bit pattern corresponding to that digit is presented on the PORTD pins. With multiplexing, the pin
count has been reduced to 12 from 32, a saving of 20 input/output pins.�
�	! Develop a flowchart to multiplex four different digits of data on the PICLab display. Convert

the flowchart to PIC instructions and test your code.�
�	! Vary the loop timing to determine the minimum refresh rate necessary to prevent the display
from flickering.

5.3 Macros and subroutines

A Macro is a group of instructions that are referred to as a single new instruction. During assembly,
every time a Macro instruction is encountered, the original group of instructions is assembled into
the program.
A subroutine consists of a group of instructions within the user program that begin with a subroutine
name tt label and end with a return statement. A call label instruction branches the program
to label and executes the subroutine code until the return instruction restores the program flow
to the instruction following the call.

35

The following code incorporates some practical programming techniques to implement a display
multiplexing scheme. A macro definition is shown as well as an efficient method of implementing a
jump table to select one of several branch possibilities.�
�	! Analyse and document the code; explain clearly the functionality of the subroutines, then

compare the functionality of this program with your version. You may want to save your code
into a file (say, Show4.asm) before you build and run it. Be sure to add some of your own
code to provide meaningful values to 7seg 0 ... 7seg 3, then run the program.

; Show4.asm: multiplex the four-digit seven-segment display

7seg_0 equ 0x20 ; least significant display digit

7seg_1 equ 0x21

7seg_2 equ 0x22

7seg_3 equ 0x23 ; most significant display digit

7seg_ptr equ 0x24 ; pointer to current digit displayed.....

Move macro src,dst ; register to register move, modifies W

movf src,W ; the macro defines a new Move

movwf dst ; instruction that is not available

endm ; as part of the PIC instruction set

; your code goes here, with a call to Scan7seg

return

Scan7seg ;

incf 7seg_ptr,F ;

movlw 3 ;

andwf 7seg_ptr,F ;

movlw 0xf0 ;

andwf PORTB,F ;

call Show7seg ;

iorwf PORTB,F ;

return ;

Show7seg ;

movf 7seg_ptr,W ;

addwf PCL,F ;

goto Show0 ;

goto Show1 ;

goto Show2 ;

goto Show3 ;

Show0 Move 7seg_0,PORTD ;

retlw %00000001 ; bit 0 selects display 0, active high ..

Show1 Move 7seg_1,PORTD ;

retlw %00000010 ;

Show2 Move 7seg_2,PORTD ;

36

retlw %00000100 ;

Show3 Move 7seg_3,PORTD ;

retlw %00001000 ;

The bits of a port are generally assigned various functions so you must take care to modify only the
pertinent bits when using byte size instructions. This masking process requires reading the current
port value, modifying only specific bits, then writing back the data to the port. Bit manipulation
instructions are not useful when the bit to be modified varies, as in the selection of the digit to be
displayed.

5.4 Interrupts

You will note that depending on the code that you added, the above program will initialize the digit
values and display them indefinitely, or you will have implemented a loop that modifies the digit
variables and calls the Scan7seg subroutine. In the first case, the PIC is fully occupied scanning
the display and can perform no other function; in the second case the refresh rate is determined by
repeated calls to a subroutine.
The ideal way to execute a periodic sequence of events is to use an interrupt. A hardware timer on
the PIC interrupts the program flow every 5ms and executes a call to a user interrupt service routine
(ISR). The ISR code runs in the background independently of the user program. You can, with
an ISR, update the display variables or wait for input while the Scan7seg ISR scans the display
at a constant rate. Note that the execution time of the ISR must be less than the time between
interrupts or your program will hang. With this in mind, your ISR is disabled when the PIC is
reset.
To define an interrupt service subroutine that will be remembered by the PIC until redefined, add
the #UserISRon directive following your ISR subroutine code:

#UserISRon Scan7seg ;set Scan7seg as user ISR and enable interrupt

The ISR routine will only execute while your program is running. To test some ISR code, you
can program a one-line instruction (e.g. here goto here) to execute an infinite loop; the ISR
routine will execute until the PICLab board is reset. The user ISR routine can be turned on and
off from within your program with the following instructions:

bcf Flags,USERISR ;reset user ISR flag, disable user ISR

bsf Flags,USERISR ;set user ISR flag, enable user ISR

5.5 Analog-to-digital conversion

The PIC can sample one of eight input channels with a 10-bit resolution. To perform an analog-to-
digital conversion (ADC), an input channel is selected. A delay follows, to allow the input voltage
to be sampled. A start of conversion flag is set to begin the ADC and another flag is set when the
conversion is completed. The data is then ready to be used.
The ReadAD subroutine performs all of the above tasks. Load the W register with the number of the
input channel and call the routine. After 50µs, the lower eight bits of data are returned in the WL

37

file register and the two most significant bits are in WH. The Getkey routine reads A/D channel 0
and uses the three most significant bits of the converted value to determine which key was pressed.�
�	! picl has predefined pointers to the 7-segment LED displays called Digit0..Digit3, a subrou-

tine equivalent to Scan7seg called Refresh and a routine LedTable, similar to your Convert
routine, that converts a value 0-0x0F contained in W to the 7-segment pattern for the corre-
sponding hex digit. For convenience and to make your code more compact, use these as part
of your programs.

The following code reads a 10-bit value from the A/D converter channel connected to the
keypad and displays it as three hexadecimal digits on the LED display. Complete the missing
code and verify that the program functions as expected:

#UserISRon Refresh ;define LED display scanning routine as user ISR

bsf Flags,USERISR ;enable execution of user interrupt routine

begin ;select the keypad channel

..... ;read 10-bit A/D value, store in WH:WL

..... ;place lower 8 bits of 10-bit A/D value in W

..... ;set bits 4-7 to zero, bits 0-3 are A/D bits 0-3

call LedTable ;convert value in W to 7-segment hex digit

movwf Digit0 ;display hex digit for A/D bits 0-3

swapf WL,W ;place swapped nibbles (hex digits) from WL into W

..... ;set bits 4-7 to zero, bits 0-3 are A/D bits 4-7

..... ;convert value in W to 7-segment hex digit

..... ;display hex digit for A/D bits 4-7

..... ;place upper 2 bits of 10-bit A/D value in W

..... ;convert value in W to 7-segment hex digit

..... ;display hex digit for A/D bits 8-9

..... ;loop code

5.6 Utility subroutines and data output

There are several pre-loaded subroutines available for use as part of your programs. Click on the
help menu ’?’, and browse the ’Routines’ subdirectories. You should become familiar with these
routines; they are bug-free and will make your programming task much easier.
Several of these routines make the output and conversion of data a simple matter. For example, the
Bin2BCD routine takes the 16-bit binary value stored in the file registers WH and WL and converts it
to a five-digit signed or unsigned decimal value stored in registers Dec0-Dec4. The BCD2LED routine
converts and outputs this result to the 7-segment display. Alternately, the contents of Dec0-Dec4
can be sent to the ’PICLab output’ window in picl as an ASCII 3 string by calling the BCD2TCL

routine, or to the LCD display by calling the BCD2LCD routine. The PICLab LCD display uses the
ASCII character set. These routines require parameters to be set prior to execution.

3ASCII refers to the American Standard Code for Information Interchange, where an 8-bit value is used to
represent the character set of alphanumeric characters a-z, A-Z, 0-9 as well as other symbols typically found on a
keyboard, such as ?, +, !. Coded in the range of ASCII=0-0x1F, are non-printed control characters.

38

To send to picl a single ASCII character stored in W, use the TxByte routine. To send a value
in W in the range of 0-9 as the corresponding ASCII decimal character, use the TxDigit routine.
The Hex2TCL routine outputs the value in W as a 2-character hexadecimal string, while the Dec2TCL

routine outputs the value in W in the valid range of 0-99 as a 2-character decimal string.
The characters sent to picl are stored in a buffer until a newline character ASCII=0x0A, is received.
This is handy when several columns of data need to be sent; they will be displayed on the same
line until terminated by a newline character. To separate your data values with a space, send the
’space’ character, ASCII=0x20.
The following code segment outputs the value in WH:WL as a decimal string to the PICLab output
window:

call Bin2BCD ;convert 16-bit value in WH:WL to decimal string

movlw 6 ;set field width for BCD2TCL to 6 characters

call BCD2TCL ;send string to TCL buffer

movlw ’\n ;load W register with ASCII newline character

call TxByte ;send character, flush buffer to display contents

For the following exercises, begin by sketching a flowchart of the logical steps required to perform
the given task, then convert each step to one or more PIC instructions that will define your program.
Be sure to thoroughly document your code. Test your code initially on the PIC simulator, then
execute your program on PICLab:

1. write a program that reads the keypad channel and displays the result as a decimal value 0-
1023 on the 7-segment LED display. The value should change as the various keypad switches
are pressed;

2. write a program that outputs three pairs of coordinate points (1,2), (2,4), (3,8) to the PICLab
output window. The data should appear as an array of three rows by two columns. Click the
Graph button to generate a Gnuplot graph of your data. Check the Lines box to interpolate

the data with line segments;

3. write programs that implement in software the summing and shift/add algorithms used to
multiply two 4-bit numbers that were implemented in hardware as part of Experiment 6.
Begin by reviewing the arithmetic instructions available to the PIC and their effect on the
carry C and zero Z flags contained in the STATUS register.

39

