Physics 4P41

Homework assignment No. 1

Due January 31, 2019 (Thu)

Questions Marks

1. Langevin paramagnet is a system of N non-interacting classical magnetic dipoles described by the Hamiltonian

$$H = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2M} - \sum_{i=1}^{N} \mathbf{m}_i \mathbf{B},$$

where \mathbf{m}_i are the magnetic dipole moments of the particles ($|\mathbf{m}_i| = m$), and \mathbf{B} is the external magnetic field. Assuming that $\mathbf{B} \parallel \hat{z}$ in 3D,

- (a) calculate the expectation value of the z-component of the magnetic moment per particle at arbitrary B, and the susceptibility $\chi(T)$ at small B.
- (b) calculate the internal energy and the Helmholtz free energy per particle as functions of temperature and magnetic field (express your answer in terms of $x = mB/k_BT$); (2)
- (c) calculate and plot the specific heat per particle c_V as a function of $y = 1/x = k_B T/mB$. What are the asymptotics of c_V at $T \to 0$ and $T \to \infty$?
- 2. Do 1(a,b,c) for a system of N fixed non-interacting quantum magnetic dipoles (spins 1/2) described by the Hamiltonian

$$H = -B\sum_{i=1}^{N} m_z,$$

where $m_z = \pm m$ is the spin magnetic moment.

$$(a) (1)$$

$$(c) (1)$$

3. The energy of a 1D classical anharmonic oscillator is given by $H=p^2/2m+bx^{2n}$, where n>1. Consider a thermodynamic system composed of a large number N of the identical non-interacting oscillators, at constant T and V.

Calculate the specific heat per oscillator
$$c_V$$
. (2)

- 4. For a ultra-relativistic gas of non-interacting classical particles in 3D with $E(\mathbf{p}) = c|\mathbf{p}|$, find
 - (a) the internal energy and the Helmholtz free energy per particle as functions of T; (1)
 - (b) the equation of state (i.e. a relation between p, V, N, and T). (1)
- 5. For an ideal classical gas of monoatomic molecules of mass m in 3D, calculate the average fluctuation of the total energy:

$$\frac{\sigma_E}{\langle E \rangle} = \frac{\sqrt{\langle E^2 \rangle - \langle E \rangle^2}}{\langle E \rangle}.$$

Assume that the temperature T, volume V, and the number of particles N are kept constant. (2)

Total = 15