
Assignment No. 2

Physics 4P52

Due Monday, January 22, 2007

1. Obtain normalized common eigenvectors |SM〉 of Ŝ
2 = (ŝ1 + ŝ2)

2 and Ŝz = ŝ1z + ŝ2z

for two spin-1/2 particles as follows (here we write |+〉 = |s = 1

2
m = 1

2
〉 and |−〉 =

|s = 1

2
m = −1

2
〉):

(a) Start from |S = 1 M = 1〉 = |s1 = 1

2
m1 = 1

2
〉|s2 = 1

2
m2 = 1

2
〉 (this was shown

in the class) and act on it twice with Ŝ− = ŝ1− + ŝ2− to obtain normalized
eigenvectors |S = 1 M = 0〉 and |S = 1 M = −1〉. (Hint: Apply Ŝ− to
the left-hand side and ŝ1− + ŝ2− to the right-hand side using K̂±|k m λ〉 =

h̄
√

k(k + 1) − m(m ± 1)|k m − 1 λ〉 valid for general angular momentum.)

(b) Find the linear combination of |s1 = 1

2
m1 = 1

2
〉|s2 = 1

2
m2 = −1

2
〉 and |s1 =

1

2
m1 = −1

2
〉|s2 = 1

2
m2 = 1

2
〉 that is normalized and orthogonal to |S = 1M = 0〉

obtained in (a). The resulting vector must be |S = 0M = 0〉. Explain why that
is the case.

2. One can define the particle exchange operator Ê in the spin space Hs for two spin-1/2
particles as a linear operator such that (now we write |+〉|+〉 = |++〉, |+〉|−〉 = |+−〉,
etc.)

Ê| + +〉 = | + +〉 , Ê| + −〉 = | − +〉 , Ê| − +〉 = | + −〉 , Ê| − −〉 = | − −〉

(i.e. it puts particle 1 into state in which particle 2 was, and vice versa).

(a) Show that Ê is Hermitian and therefore that it is an observable.

(b) Show that Ê2 = 1̂ (and therefore Ê−1 = Ê = Ê†, so that Ê is also unitary).

(c) Use (b) to show that the possible eigenvalues of Ê are +1 and -1. (The eigen-
vectors corresponding to the eigenvalue +1 are said to be symmetric under the
exchange of particles, while the eigenvectors corresponding to the eigenvalue -1
are said to be antisymmetric under the particle exchange).

(d) Show that spin singlet is antisymmetric, while the spin triplet states are sym-
metric under the exchange of particles in spin space.
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Note: The exchange operator also acts on spatial states of particles, interchanging
particles between two orbital states. Pauli principle states that the complete state
(both orbital and spin) of several identical particles with half-integer spin must be
antisymmetric under the exchange of any two particles. Hence for two identical spin-
1/2 particles if the total spin state is singlet, the total orbital state must be symmetric
under the particle exchange, while if the total spin state is a triplet state the total
orbital state must be antisymmetric under the particle exchange.

3. (a) Show that

ŝ1 · ŝ2 =
1

2
(Ŝ2 − ŝ

2

1 − ŝ
2

2)

where, of course, Ŝ
2 = (ŝ1 + ŝ2)

2.

For two spins-1/2 ŝ
2

1
= 3h̄2/4 = ŝ

2

2
and then

ŝ1 · ŝ2 =
1

2
Ŝ

2 −
3

4
h̄2 .

(b) Show that spin singlet and spin triplet states are the eigenvectors of ŝ1 · ŝ2 and
find the corresponding eigenvalues.

(c) If the interaction between two spins is of the form

Ĥ = −J ŝ1 · ŝ2

find the eigenvalues of Ĥ and the corresponding eigenvectors. If J >0 (ferro-
magnetic coupling) show that the singlet state has higher energy than a triplet
state and that therefore the system of two spins-1/2 will lower its energy by
“aligning the spins”.

(d) Use (a) to show that the operator P̂1 = 3/4 + ŝ1 · ŝ2/h̄
2 annihilates the singlet

state and multiplies a triplet state by 1. Thus acting on arbitrary two-spin-1/2
state P̂1 projects out the triplet part of the state.

(e) Show that P̂0 = 1̂ − P̂1 = 1/4 − ŝ1 · ŝ2/h̄
2 is a projection operator for the

spin-singlet state.

4. Let H = H1 ⊗ H2 and Â = Â1 ⊗ Â2 + B̂1 ⊗ B̂2 a correlated observable, where Â1,
Â2, B̂1 and B̂2 are Hermitian operators in relevant factor spaces and [Â2, B̂2]=0. The
solution to the eigenvalue problem of Â can be obtained in two steps:

• Find a solution to the common eigenvalue problem of Â2 and B̂2 in H2

Â2|a2b2λ〉 = a2|a2b2λ〉

B̂2|a2b2λ〉 = b2|a2b2λ〉 .
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• Form an auxiliary operator a2Â1+b2B̂1 in H1 and find a solution to its eigenvalue
problem

(a2Â1 + b2B̂1)|cν〉 = c|cν〉

(note that c = c(a2, b2)).

Then
Â(|cν〉 ⊗ |a2b2λ〉) = c(|cν〉 ⊗ |a2b2λ〉) .

(a) Prove the above theorem which is known as the general theorem on separation

of variables.

(b) Apply this theorem to the eigenvalue problem of l̂
2 in HΩ = Hθ ⊗ Hφ (see

Assignment No. 1) since

l̂
2 = −h̄2

[

1

sin2 θ

∂2

∂φ2
+

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)]

=
1

sin2 θ
⊗l̂2z+(−h̄2)

1

sin θ

d

dθ

(

sin θ
d

dθ

)

⊗1̂φ,

where l̂z = −ih̄d/dφ in Hφ and write down the eigenvalue problem of the aux-
iliary operator appearing in the second step (now c = h̄2l(l + 1) as known from
the general theory of angular momentum) as a differential equation.
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