Assignment No. 2

Physics 4P52

Due Monday, January 22, 2007

- 1. Obtain normalized common eigenvectors $|SM\rangle$ of $\hat{\mathbf{S}}^2 = (\hat{\mathbf{s}}_1 + \hat{\mathbf{s}}_2)^2$ and $\hat{S}_z = \hat{s}_{1z} + \hat{s}_{2z}$ for two spin-1/2 particles as follows (here we write $|+\rangle = |s = \frac{1}{2} m = \frac{1}{2} \rangle$ and $|-\rangle = |s = \frac{1}{2} m = -\frac{1}{2} \rangle$):
 - (a) Start from $|S=1\ M=1\rangle=|s_1=\frac{1}{2}\ m_1=\frac{1}{2}\rangle|s_2=\frac{1}{2}\ m_2=\frac{1}{2}\rangle$ (this was shown in the class) and act on it twice with $\hat{S}_-=\hat{s}_{1-}+\hat{s}_{2-}$ to obtain normalized eigenvectors $|S=1\ M=0\rangle$ and $|S=1\ M=-1\rangle$. (*Hint*: Apply \hat{S}_- to the left-hand side and $\hat{s}_{1-}+\hat{s}_{2-}$ to the right-hand side using $\hat{K}_{\pm}|k\ m\ \lambda\rangle=\hbar\sqrt{k(k+1)-m(m\pm1)}|k\ m-1\ \lambda\rangle$ valid for general angular momentum.)
 - (b) Find the linear combination of $|s_1 = \frac{1}{2} m_1 = \frac{1}{2} \rangle |s_2 = \frac{1}{2} m_2 = -\frac{1}{2} \rangle$ and $|s_1 = \frac{1}{2} m_1 = -\frac{1}{2} \rangle |s_2 = \frac{1}{2} m_2 = \frac{1}{2} \rangle$ that is normalized and orthogonal to $|S = 1 M = 0 \rangle$ obtained in (a). The resulting vector must be $|S = 0 M = 0 \rangle$. Explain why that is the case.
- 2. One can define the particle exchange operator \hat{E} in the spin space \mathcal{H}_s for two spin-1/2 particles as a linear operator such that (now we write $|+\rangle|+\rangle = |++\rangle$, $|+\rangle|-\rangle = |+-\rangle$, etc.)

$$|\hat{E}|++\rangle=|++\rangle\,, |\hat{E}|+-\rangle=|-+\rangle\,, |\hat{E}|-+\rangle=|+-\rangle\,, |\hat{E}|--\rangle=|--\rangle$$

- (i.e. it puts particle 1 into state in which particle 2 was, and vice versa).
- (a) Show that \hat{E} is Hermitian and therefore that it is an observable.
- (b) Show that $\hat{E}^2 = \hat{1}$ (and therefore $\hat{E}^{-1} = \hat{E} = \hat{E}^{\dagger}$, so that \hat{E} is also unitary).
- (c) Use (b) to show that the possible eigenvalues of \hat{E} are +1 and -1. (The eigenvectors corresponding to the eigenvalue +1 are said to be symmetric under the exchange of particles, while the eigenvectors corresponding to the eigenvalue -1 are said to be antisymmetric under the particle exchange).
- (d) Show that spin singlet is antisymmetric, while the spin triplet states are symmetric under the exchange of particles in spin space.

Note: The exchange operator also acts on spatial states of particles, interchanging particles between two orbital states. Pauli principle states that the complete state (both orbital and spin) of several *identical* particles with half-integer spin must be antisymmetric under the exchange of any two particles. Hence for two identical spin-1/2 particles if the total spin state is singlet, the total orbital state must be symmetric under the particle exchange, while if the total spin state is a triplet state the total orbital state must be antisymmetric under the particle exchange.

3. (a) Show that

$$\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2 = \frac{1}{2} (\hat{\mathbf{S}}^2 - \hat{\mathbf{s}}_1^2 - \hat{\mathbf{s}}_2^2)$$

where, of course, $\hat{\mathbf{S}}^2 = (\hat{\mathbf{s}}_1 + \hat{\mathbf{s}}_2)^2$.

For two spins-1/2 $\hat{\mathbf{s}}_1^2 = 3\hbar^2/4 = \hat{\mathbf{s}}_2^2$ and then

$$\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2 = \frac{1}{2} \hat{\mathbf{S}}^2 - \frac{3}{4} \hbar^2 .$$

- (b) Show that spin singlet and spin triplet states are the eigenvectors of $\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2$ and find the corresponding eigenvalues.
- (c) If the interaction between two spins is of the form

$$\hat{H} = -J\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2$$

find the eigenvalues of \hat{H} and the corresponding eigenvectors. If J>0 (ferromagnetic coupling) show that the singlet state has higher energy than a triplet state and that therefore the system of two spins-1/2 will lower its energy by "aligning the spins".

- (d) Use (a) to show that the operator $\hat{P}_1 = 3/4 + \hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2/\hbar^2$ annihilates the singlet state and multiplies a triplet state by 1. Thus acting on arbitrary two-spin-1/2 state \hat{P}_1 projects out the triplet part of the state.
- (e) Show that $\hat{P}_0 = \hat{1} \hat{P}_1 = 1/4 \hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2/\hbar^2$ is a projection operator for the spin-singlet state.
- 4. Let $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ and $\hat{A} = \hat{A}_1 \otimes \hat{A}_2 + \hat{B}_1 \otimes \hat{B}_2$ a correlated observable, where \hat{A}_1 , \hat{A}_2 , \hat{B}_1 and \hat{B}_2 are Hermitian operators in relevant factor spaces and $[\hat{A}_2, \hat{B}_2] = 0$. The solution to the eigenvalue problem of \hat{A} can be obtained in two steps:
 - Find a solution to the common eigenvalue problem of \hat{A}_2 and \hat{B}_2 in \mathcal{H}_2

$$\hat{A}_2|a_2b_2\lambda\rangle = a_2|a_2b_2\lambda\rangle$$

 $\hat{B}_2|a_2b_2\lambda\rangle = b_2|a_2b_2\lambda\rangle$.

• Form an auxiliary operator $a_2\hat{A}_1 + b_2\hat{B}_1$ in \mathcal{H}_1 and find a solution to its eigenvalue problem

$$(a_2\hat{A}_1 + b_2\hat{B}_1)|c\nu\rangle = c|c\nu\rangle$$

(note that $c = c(a_2, b_2)$).

Then

$$\hat{A}(|c\nu\rangle\otimes|a_2b_2\lambda\rangle) = c(|c\nu\rangle\otimes|a_2b_2\lambda\rangle)$$
.

- (a) Prove the above theorem which is known as the general theorem on separation of variables.
- (b) Apply this theorem to the eigenvalue problem of $\hat{\mathbf{l}}^2$ in $\mathcal{H}_{\Omega} = \mathcal{H}_{\theta} \otimes \mathcal{H}_{\phi}$ (see Assignment No. 1) since

$$\hat{\mathbf{l}}^2 = -\hbar^2 \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right] = \frac{1}{\sin^2 \theta} \otimes \hat{l}_z^2 + (-\hbar^2) \frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) \otimes \hat{\mathbf{l}}_\phi,$$

where $\hat{l}_z = -i\hbar d/d\phi$ in \mathcal{H}_{ϕ} and write down the eigenvalue problem of the auxiliary operator appearing in the second step (now $c = \hbar^2 l(l+1)$ as known from the general theory of angular momentum) as a differential equation.