1. Theory

A graph of periodic function ƒ(x), that has period L, exhibits the same pattern every L units along the x-axis, so that f(x + L) = f(x) for every value of x. If we know what the function looks like over one complete period, we can thus sketch a graph of the function over a wider interval of x (that may contain many periods).

This property of repetition defines a fundamental spatial frequency k = 2πL that can be used to give a first approximation to the periodic patternƒ(x):

ƒ(x) ≃ c1 sin(kx + α1) = a1 cos(kx) + b1 sin(kx)

- where symbols with subscript 1 are constants that determine the amplitude and phase of this first approximation.

 

 

 

A much better approximation of the periodic pattern ƒ(x) can be built up by adding an appropriate combination of harmonics to this fundamental (sine-wave) pattern. For example, adding:

c2 sin(2kx + α2) = a2 cos(2kx) + b2 sin(2kx) (the 2nd harmonic)

c3 sin(3kx + α3) = a3 cos(3kx) + b3 sin(3kx) (the 3rd harmonic)

Here, symbols with subscripts are constants that determine the amplitude and phase of each harmonic contribution.

One can even approximate a square-wave pattern with a suitable sum that involves a fundamental sine-wave plus a combination of harmonics of this fundamental frequency. Such sums are called Fourier series.

In this Tutorial, we consider working out Fourier series for functions f(x) with period L = 2π. Their fundamental frequency is then k = 2π/L = 1, and their Fourier series representations involve terms like:

a1cos x , b1sin x
a2cos 2x , b2sin 2x
a3cos 3x , b3sin 3x

We also include a constant term a0 ⁄ 2 in the Fourier series. This allows us to represent functions that are, for example, entirely above the x−axis.

The higher the number of harmonics included, the closer our series represents the function ƒ(x):

ƒ(x) = a0 ⁄ 2 + a1cos x + a2cos 2x + a3cos 3x + ...
  + b1sin x + b2sin 2x + b3sin 3x + ...

A more compact way of writing the Fourier series of a function ƒ(x), with period 2π, uses the variable subscript n = 1, 2, 3, ...

ƒ(x) = a0/2 + Σ n=1 [ ancos nx + bnsin nx ]

We need to work out the Fourier coefficients (a0, an and bn) for given functions f(x). This process is broken down into three steps:

STEP ONE Compute constant coefficient:     a0 = 1/π   2πƒ(x) dx
STEP TWO Compute cosine coefficients:     an = 1/π   2πƒ(x) cos nx dx
STEP TWO Compute sin coefficients:     bn = 1/π   2πƒ(x) sin nx dx

- where integrations are over a single interval in x of L = 2π.

Finally, specifying a particular value of x = x1 in a Fourier series, gives a series of constants that should equal f(x1). However, if f(x) is discontinuous at this value of x, then the series converges to a value that is half-way between the two possible function values, as the figure on the right shows.

 

2. Exercises

Exercise 1: Let ƒ(x) be a function of period 2π such that:

ƒ(x) = { 1: −π < x < 0
0:    0 < x < π
(a)Sketch a graph of ƒ(x) in the interval −2π < x < 2π

Solution:

(b)Show that the Fourier series for ƒ(x) in the interval π < x < π is:
1/ 22/ π [ sin x + 1/3 sin 3x + 1/5 sin 5x + ... ]

Solution:

STEP ONE
a0 = 1/π  π π ƒ(x) dx = 1/π  0 π ƒ(x) dx + 1/π  π  0 ƒ(x) dx
  = 1/π  0 π 1⋅dx + 1/π  π  0 0⋅dx
  = 1/π 0 πdx
  = 1/π [x]0πdx
  = 1/π (0 − (−π))
  = 1/π ⋅(π)
i.e.  a0 = 1

STEP TWO

an = 1/ π  π  π ƒ(x) cos nxdx = 1/π  0 π ƒ(x) cos nxdx + 1/π  π  0 ƒ(x) cos nxdx
  = 1/π  0 π 1⋅cos nxdx + 1/ π  π 0 0⋅cos nxdx
  = 1/π  0 π cos nxdx
  = 1/π [ sin nx/n ] 0 π = 1/ [sin nx]0π
  = 1/π (sin 0 − sin (−))
  = 1/π (0 + sin )
i.e.  an = 1/π (0 + 0) = 0

STEP THREE

bn = 1/ π  π  π ƒ(x) sin nxdx = 1/π  0 π ƒ(x) sin nxdx + 1/π  π  0 ƒ(x) sin nxdx
  = 1/π  0 π 1⋅sin nxdx + 1/ π  π 0 0⋅sin nxdx
i.e.  bn = 1/π  0 π sin nxdx = 1/π [ − cos nx/n ] 0 π
  = 1/ [cos nx]0π = − 1/ (cos 0 − cos (−))
  = 1/ (1 − cos ()) = − 1/ (1 − (−1)n)  see TRIG
i.e.  bn = { 0: n even
2/: nodd
since (−1)n = { 1: n even
−1: odd

We now have that ƒ(x) = a0/2 + Σ n=1 [ ancos nx + bnsin nx ]

with the three steps giving:

a0 = 1, an = 0 and and bn = { 0: n even
2/: nodd

It may be helpful to construct a table of values of bn:

n 1 2 3 4 5
bn 2/π 0 2/π (1/3) 0 2/π (1/5)

Substituting our results now gives the required series:

ƒ(x) = 1/ 22/ π [ sin x + 1/3 sin 3x + 1/5 sin 5x + ... ]
(c)By giving an appropriate value to x, show that:
π/4  =  1 − 1/3 + 1/51/7 + ...

Solution: Comparing the given series with:

ƒ(x) = 1/ 22/ π [sin x + 1/3 sin 3x + 1/5 sin 5x + ... ]

we clearly require sin x = 1, sin 3x = −1, sin 5x = 1, sin 7x = −1, etc.

The first condition sin x = 1 suggests trying x = (π/ 2). This choice gives:

  sin π/2 + (1/ 3) sin (3π/ 2) + (1/ 5) sin (5π/ 2) + (1/ 7) sin (7π/ 2)
i.e. 1 (1/ 3) + (1/ 5) (1/ 7)

From the figure we see that ƒ((π/ 2)) = 0.

Picking x = (π/ 2) this gives:

  0 = 1/22/ π [ sin π/2 + 1/3 sin 3π/2 + 1/5 sin 5π/2 1/7 sin 7π/2 + ... ]
i.e.   0 = 1/22/ π [ 1 1/3 + 1/5 1/7 + ... ]

A little manipulation then gives the series representation of π/4:

2/ π [ 1 − 1/3 + 1/51/7 + ... ] = 1/2
i.e.  1 − 1/3 + 1/51/7 + ... = π/4

Click on questions to reveal their solution

Exercise 2: Let ƒ(x) be a function of period 2π such that:

ƒ(x) =  { 0: −π < x < 0
x:  0 < x < π
(a) Sketch a graph of ƒ(x) in the interval −3π < x < 3π

Solution:

(b) Show that the Fourier series for ƒ(x) in the interval π < x < π is:
π/42/π [cos x + 1/32 cos 3x + 1/52 cos 5x + ... ]
+ [ sin x1/2 sin 2x + 1/3 sin 3x − ... ]

Solution:

STEP ONE
a0 = 1/π  π  π ƒ(x) dx = 1/π  0 π ƒ(x) dx + 1/π  π  0ƒ(x) dx
  = 1/π  0 π0⋅dx + 1/π  π  0xdx
  = 1/π [ x2/2 ] π 0
  = 1/π ( π2/2 − 0 )
i.e.  a0 = π/2

STEP TWO

an = 1/ π  π π ƒ(x) cos nxdx = 1/π  0 π ƒ(x) cos nxdx + 1/π  π  0 ƒ(x) cos nxdx
  = 1/π  0 π0⋅cos nxdx + 1/ π  π 0x cos nxdx
i.e.  an = 1/ π  π −0 x cos nxdx = 1/π {[ x sin nx/n ] π 0  π 0sin nx/ndx}   - using integration by parts
i.e.  an = 1/π {( π sin nx/n − 0 )1/n [cos nx/n ] π 0 }
  = 1/π { (0 − 0) + 1/n2 [cos nx] π0 }
  = 1/πn2 {cos  − cos 0} = 1/πn2 {(−1)n − 1}
i.e.  an = { 0: n even
2/πn2: nodd;
see TRIG

STEP THREE

bn = 1/ π  π  π ƒ(x) sin nxdx = 1/π  0 π ƒ(x) sin nxdx + 1/π  π  0 ƒ(x) sin nxdx
  = 1/π  0 π0⋅sin nxdx + 1/ π  π 0x sin nxdx
i.e.  bn = 1/π  π 0x sin nxdx = 1/π {[ x(cos nx/n) ] π 0  π 0(cos nx/ndx}   - using integration by parts
  = 1/π {1/n [x cos nx] π0 + 1/n  π 0cos nxdx }
  = 1/π {1/n (π cos nx − 0) + 1/n [ sin nx/n ] π 0 }
  = 1/n (−1)n + 1/πn2(0 − 0)   - see TRIG
  = 1/n (−1)n
i.e.  bn = { 1/n : n even
+ 1/n: nodd

We now have ƒ(x) = a0/2 + Σ n=1 [ ancos nx + bnsin nx ]

- where:  a0 = π/2, an = { 0: n even
2/πn2: nodd
  and   bn = { 1/n : n even
+ 1/n: nodd

Constructing a table of values gives:

n 1 2 3 4 5
an 2/π 0 2/π1/32 0 2/π1/52
bn 1 1/2 1/3 1/4 1/5

This table of coefficients gives:

ƒ(x) = 1/ 2 ( π/ 2 ) + (2/ π ) cos x + 0⋅cos 2x + (2/ π1/ 32 ) cos 3x + 0⋅cos 4x + (2/ π1/ 52 ) cos 5x + ...
+ sin x1/ 2 sin 2x + 1/ 3 sin 3x − ...
i.e.   ƒ(x) = π/ 42/ π [cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ...] + [ sin x1/ 2 sin 2x + 1/ 3 sin 3x − ... ]

and we have found the required series.

(c) By giving appropriate values to x, show that:
(i) π/4 = 1 − 1/3 + 1/51/7 + ...    and (ii)  π2/8 = 1 + 1/32 + 1/52 + 1/72 + ...

Solution:

(i) Comparing the given series with:

ƒ(x) = π/ 42/ π [ cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ...] + [ sin x1/ 2 sin 2x + 1/ 3 sin 3x − ... ],

we see that the required series of constants does not involve terms like 1/32, 1/52, 1/72, ... so we need to pick a value of x that sets the cos nx terms to zero. The Trig section shows that cos  = 0 when n is odd, and we note also that the cos nx terms in the Fourier series all have odd n:

i.e.  cos x = cos 3x = cos 5x = ... = 0   when x = π/2,
i.e.   cos π/2 = cos 3π/2 = cos 5π/2 = ... = 0

Setting x = π/ 2 in the series for ƒ(x) gives:

ƒ(π/ 2) = π/ 42/ π [ cos π/2 + 1/ 32 cos 3π/2 + 1/ 52 cos 5π/2 + ...]
    + [ sin π/21/ 2 sin 2π/2 + 1/ 3 sin 3π/21/ 4 sin 4π/2 + 1/ 5 sin 5π/2 − ... ]
  = π/ 42/ π [ 0 + 0 + 0 + ... ]
    + [ 1 − 1/ 2 sin π + 1/ 3(−1) − 1/ 4 sin 2π + 1/ 5(1) − ... ]

From the figure we see that ƒ (π/ 2) = π/ 2 , so that:

  π/2 = π/4 + 1 − 1/3 + 1/51/7 + ...
i.e.   π/4 = 1 − 1/3 + 1/51/7 + ...

 

(ii) Compare the given series with:

ƒ(x) = π/ 42/ π [ cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ...] + [ sin x1/ 2 sin 2x + 1/ 3 sin 3x − ... ]

This time, we want to use the coefficients of the cos nx terms, and the same choice of x needs to set the sin nx terms to zero.

Picking x = 0 gives:

sin x = sin 2x = sin 3x = 0    and    cos x = cos 3x = cos 5x = 1

We also note from the figure that ƒ(x) = 0 when x = 0.

Setting x = 0 gives:

0 = π/ 42/ π [ cos 0 + 1/ 32 cos 0 + 1/ 52 cos 0 + 1/ 72 cos 0 + ... ] + 0 − 0 + 0 − 0 − ...

We then find that:

2/π [ 1 + 1/32 + 1/521/72 + ... ] = π/ 4
and   1 + 1/32 + 1/521/72 + ... ]
= π2/ 8

Click on questions to reveal their solution

Exercise 3: Let ƒ(x) be a function of period 2π such that:

ƒ(x) =  { x: 0 < x < π
π: π < x < 2π
(a) Sketch a graph of ƒ(x) in the interval −2π < x < 2π

Solution:

(b) Show that the Fourier series for ƒ(x) in the interval 0 < x < 2π is:
3π/ 42/ π [ cos x + 1/32 cos 3x + 1/52 cos 5x + ... ]
[ sin x + 1/2 sin 2x + 1/3 sin 3x + ... ]

Solution:

STEP ONE
a0 = 1/π 2π  0 ƒ(x) dx = 1/π   π 0 ƒ(x) dx + 1/π 2π  πƒ(x) dx
  = 1/π  π  0xdx + 1/π 2π  ππdx
  = 1/π [ x2/2 ]  π  0 + π/π [x] 2π  π
  = 1/π ( π2/2 − 0) + (2ππ)
  = π/2 + π
i.e.  a0 = 3π/2

STEP TWO

an = 1/π  π 0 ƒ(x) cos nxdx
  = 1/π  π 0 x cos nxdx + 1/π 2π  π π cos nxdx   - use integration by parts on 1st part
  = 1/π { [ xsin nx/n ] π 0  π 0 sin nx/ndx } + π/π [ sin nx/n ] 2π  π
  = 1/π [ 1/n ( π sin nx − 0⋅sin n0 )[ − cos nx/n2 ]  π  0 + 1/n (sin n2π − sin )
i.e.  an = 1/π [ 1/n (0 − 0) + ( cos nx/n2cos 0/n2 ] + 1/n (0 − 0)
  = 1/n2π (cos  − 1)   - see TRIG
  = 1/n2π ((−1)n − 1)
i.e.  an = { 1/n2π: n odd
0: neven;

STEP THREE

bn = 1/π  π 0 ƒ(x) sin nxdx
  = 1/π  π 0 x sin nxdx + 1/π 2π  π π sin nxdx   - use integration by parts on 1st part
  = 1/π { [ x (cos nx/n ) ] π 0 π0 ( − cos nx/n )dx } + π/π [ −  cos nx/n ] 2π  π
  = 1/π { ( π cos /n + 0 ) + [ sin nx/n2 ]  π 0 }1/n (cos 2 − cos )
  = 1/π [ π(−1)n/n + ( sin  − sin 0 / n2 ) ]1/n (1 − (−1)n)
  = − 1/n (−1)n + 0 − 1/n (1 − (−1)n)
  = − 1/n (−1)n1/n + 1/n (−1)n
i.e.  bn = 1/n

We now have ƒ(x) = a0/2 + Σ n=1 [ ancos nx + bnsin nx ]

- where:  a0 = 3π/2, an = { 0: n even
2/πn2: nodd
  and   bn = − 1/n

Constructing a table of values gives:

n 1 2 3 4 5
an 2/π 0 2/π1/32 0 2/π1/52
bn −1 1/2 1/3 1/4 1/5

This table of coefficients gives:

ƒ(x) = 1/ 2 ( 3π/ 2 ) + (2/ π ) [ cos x + 0⋅cos 2x + 1/ 32 cos 3x + ... ]
      + ( −1 ) [ sin x + 1/ 2 sin 2x + 1/ 3 sin 3x + ... ]
  = 3π/ 4 2/ π [ cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ... ]
        [ sin x + 1/ 2 sin 2x + 1/ 3 sin 3x + ... ]

and we have found the required series.

(c) By giving appropriate values to x, show that:
(i) π/4 = 1 − 1/3 + 1/51/7 + ...    and   π2/8 = 1 + 1/32 + 1/52 + 1/72 + ...

Solution:

(i) Compare the given series with:

ƒ(x) = 3π/ 42/ π[ cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ... ][ sin x + 1/ 2 sin 2x + 1/ 3 sin 3x + ... ]

Here, we want to set the cos nx terms to zero (since their coefficients are 1, 1/32, 1/52, ... ). Since cos n π/2 = 0 when n is odd, we try setting x = π/2 in the series. Note also that ƒ(π/2) = π/2.

This gives:

π/ 2 = 3π/ 42/ π [ cos π/ 2 + 1/ 32 cos 3π/ 2 + 1/ 52 cos 5π/ 2 + ... ][ sin π/ 2 + 1/ 2 sin 2π/ 2 + 1/ 3 sin 3π/ 2 + 1/ 4 sin 4π/ 4 + 1/ 5 sin 5π/ 2 + ... ]
i.e.   π/ 2 = 3π/ 42/ π [ 0 + 0 + 0 + ...] − [ (1) + 1/ 2⋅(0) + 1/ 3⋅(−1) + 1/ 4⋅(0) + 1/ 5⋅(1) + ... ]
so:   π/ 2 = 3π/ 4( 1 − 1/ 3 + 1/ 51/ 7 + ...)
or:   1 − 1/ 3 + 1/ 51/ 7 + ... = 3π/ 4π/ 2
   1 − 1/ 3 + 1/ 51/ 7 + ... = π/ 4,   as required.

(ii) Here, we want zero sin nx terms and to use the coefficients of cos nx. Setting x = 0 eliminates the sin nx terms from the series, and also gives:

cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ... = 1 + 1/ 32 + 1/ 52 + 1/ 72 + ... ,  , i.e. the desired series.

The graph of ƒ(x) shows a discontinuity (a "vertical jump") at x = 0. The Fourier series converges to a value that is half-way between the two values of ƒ(x) around this discontinuity, that is, the series will converge to π/ 2 at x = 0:

i.e.   π/ 2 = 3π/ 42/ π [ cos 0 + 1/ 32 cos 0 + 1/ 52 cos 0 + 1/ 72 cos 0 + ... ][ sin 0 + 1/ 2 sin 0 + 1/ 3 sin 0 + ... ]
so:   π/ 2 = 3π/ 42/ π [ 1 + 1/ 32 + 1/ 52 + 1/ 72 + ... ][ 0 + 0 + 0 + ... ]

Re-arranging the terms, we finally get:

π/ 4 = − 2/ π [ 1 + 1/ 32 + 1/ 52 + 1/ 72 + ... ]
Thus:  − π2/ 8 = − 1 + 1/ 32 + 1/ 52 + 1/ 72 + ...

Click on questions to reveal their solution

Exercise 4: Let ƒ(x) be a function of period 2π such that:

ƒ(x) = x/ 2 over the interval 0 < x < 2π
(a) Sketch a graph of ƒ(x) in the interval 0 < x < 4π

Solution:

(b) Show that the Fourier series for ƒ(x) in the interval 0 < x < 2π is:
π/ 2[ sin x + 1/2 sin 2x + 1/3 sin 3x + ... ]

Solution:

STEP ONE
a0 = 1/π 2π  0 ƒ(x) dx
  = 1/π 2π  0x/2dx
  = 1/π [ x2/4 ] 2π 0
  = 1/π [ (2π)2/4 − 0]
i.e.  a0 = π

STEP TWO

an = 1/π 2π 0 ƒ(x) cos nxdx
  = 1/π 2π 0 ( x/2 )  cos nxdx
  = 1/2π { [ xsin nx/n ] 2π 01/n 2π 0 sin nxdx }  - using integration by parts
  = 1/2π { ( 2π sin n2π/n − 0⋅sin n⋅0/n )1/n ⋅0}
  = 1/2π { (0 − 0) − 1/n ⋅0}    (see Trig section)
i.e. an = 0

STEP THREE

bn = 1/π 2π 0 ƒ(x) sin nxdx
  = 1/π 2π 0 ( x/2 )  sin nxdx = 1/2π 2π 0 x sin nxdx
  = 1/2π { [ x−cos nx/n ] 2π 01/n 2π 0 ( −cos nx/n )dx }  - using integration by parts
  = 1/2π { 1/n (−2π cos n2π + 0) + 1/n⋅0 }   (see Trig section)
  = −2π/2πn  cos n2π
  = − 1/n  cos n2π
i.e.  bn = 1/n   - since 2n is even (see Trig section)

We now have ƒ(x) = a0/2 + Σ n=1 [ ancos nx + bnsin nx ]

- where:  a0 = π/2, an = 0 and bn = − 1/n

These Fourier coefficients give:

ƒ(x) = π/ 2 + Σ n=1 (0 − 1/n sin nx)
i.e. ƒ(x) = π/ 2[ sin x + 1/ 2 sin 2x + 1/ 3 sin 3x + ... ]
(c) By giving appropriate values to x, show that:
π/4 = 1 − 1/3 + 1/51/7 + 1/9 − ...

Solution:

Setting x = π/2 gives ƒ(x) = π/4 and:

π/4 = π/2[ 1 + 0 − 1/3 + 0 + 1/5 + 0 − ... ]
π/4 = π/2[ 1 − 1/3 + 1/51/7 + 1/9 − ... ]
re-arrange:  π/4 = [ 1 − 1/3 + 1/51/7 + 1/9 − ... − ]
  π/4 = 1 − 1/3 + 1/51/7 + 1/9 − ...

Click on questions to reveal their solution

Exercise 5: Let ƒ(x) be a function of period 2π such that:

ƒ(x) =  { πx: 0 < x < π
0: π < x < 2π
(a) Sketch a graph of ƒ(x) in the interval −2π < x < 2π

Solution:

(b) Show that the Fourier series for ƒ(x) in the interval 0 < x < 2π is:
π/ 4 + 2/ π [ cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ... ]
+ sin x + 1/ 2 sin 2x + 1/ 3 sin 3x + 1/ 4 sin 4x + ...

Solution:

STEP ONE
a0 = 1/π 2π  0 ƒ(x) dx
  = 1/π  π  0(πx) dx + 1/π 2π  π0⋅dx
  = 1/π [ πx1/2x2 ] π 0 + 0
  = 1/π [ π21/2π2 − 0 ]
i.e.  a0 = π/2

STEP TWO

an = 1/π 2π 0 ƒ(x) cos nxdx
  = 1/π  π 0 (πx) cos nxdx + 1/π 2π π 0⋅dx   - use integration by parts on 1st part
  = 1/π { [ (πx) sin nx/n ] π 0 π 0 (−1) sin nx/ndx } + 0
  = 1/π { (0 − 0) + π 0 sin nx/ndx }   (see Trig section)
  = 1/πn [cos nx/n ] π 0
  = 1/πn2 (cos nx − cos 0)
  = 1/πn2 ((−1)n − 1)   (see Trig section)
i.e.  an = { 0: neven;
2/πn2: n odd

STEP THREE

bn = 1/π 2π 0 ƒ(x) sin nxdx
  = 1/π  π 0(πx sin nxdx + 1/π 2π π 0⋅dx
  = 1/π { [ (πx)(cos nx/n ) ] π 0 π0 (−1)⋅(− cos nx/n )dx } + 0
  = 1/π { [ 0 − (π/n ) ]1/n⋅0 }   (see Trig section)
i.e.  bn = 1/n

In summary, a0 = π/2, and the other Fourier coefficients are:

n 1 2 3 4 5
an = 2/πn2 (for n odd, 0 otherwise) 2/π 0 2/π1/32 0 2/π1/52
bn = 1/n −1 1/2 1/3 1/4 1/5
  ƒ(x) = a0/2 + Σ n=1 [an cos nx + bn sin nx]
  = π/ 4 + 2/ πcos x + 2/ π 1/ 32 cos 3x + 2/ π 1/ 52 cos 5x + ...
      + sin x + 1/ 2 sin 2x + 1/ 3 sin 3x + 1/ 4 sin 4x + ...
i.e.  ƒ(x) = π/ 4 + 2/ π[ cos x + 1/ 32 cos 3x + 1/ 52 cos 5x + ... ]
      + sin x + 1/ 2 sin 2x + 1/ 3 sin 3x + 1/ 4 sin 4x + ...
(c) By giving appropriate values to x, show that:
π2/8 = 1 + 1/32 + 1/52 + 1/72 + ...

Solution:

Note that, as x → 0, the series converges to the half-way value of π/2,

and then:   π/2 = π/4 + 2/π ( cos 0 + 1/32 cos 3⋅0 + 1/52 cos 5⋅0 + 1/72 cos 7⋅0 + ... )
    + sin 0 + 1/2sin 2⋅0 + 1/3sin 3⋅0 + 1/4sin 4⋅0 + ...
  π/2 = π/4 + 2/π (1 + 1/32 + 1/52 + 1/72+ ...)
re-arranging: π/4 = 2/π (1 + 1/32 + 1/52 + 1/72 + ...)
giving: π2/8 = 1 + 1/32 + 1/52 + 1/72 + ...

 

Click on questions to reveal their solution

Exercise 6: Let ƒ(x) be a function of period 2π such that:

ƒ(x) = x in the range −π < x < π
(a) Sketch a graph of ƒ(x) in the interval −3π < x < 3π

Solution:

(b) Show that the Fourier series for ƒ(x) in the interval π < x < π is:
2 [ sin x1/2 sin 2x + 1/3 sin 3x − ... ]

Solution:

STEP ONE
a0 = 1/π π π ƒ(x) dx
  = 1/π π πxdx
  = 1/π [x2/2]π π
  = 1/π ( π2/2π2/2 )
i.e.  a0 = 0

STEP TWO

an = 1/π π π ƒ(x) cos nxdx
  = 1/π π π x cos nxdx   - use integration by parts
  = 1/π { [ xsin nx/n ] π π π π (sin nx/n)dx }
  = 1/π { 1/n (π sin  − (−π) sin (−)) − 1/n π πsin nxdx}
  = 1/π { 1/n(0 − 0) − 1/n⋅0 }   - since sin  and   2π sin nx = 0
i.e.  an = 0

STEP THREE

bn = 1/π π π ƒ(x) sin nxdx
  = 1/π π πx sin nxdx
  = 1/π { [ x cos nx/n ] π πππ (− cos nx/n )dx}
  = 1/π {1/n [x cos nx] ππ + 1/n ππ cos nxdx }
  = 1/π {1/n (π cos  − (−π) cos (−)) + 1/n⋅0 }
 !! = −  π/ (cos  + cos )
  = 1/n  2 (cos )
i.e.  bn = 2/n (−1)n

We thus have:

ƒ(x) = a0/2 + Σ n=1 [an cos nx + bn sin nx]

with a0 = 0, an = 0, bn = −2/n(−1)n and:

n 1 2 3
bn 2 −1 2/3

Therefore:

ƒ(x) = b1 sin x + b2 sin 2x + b3 sin 3x + ...
i.e.  ƒ(x) = 2 [ sin x1/ 2 sin 2x + 1/ 3 sin 3x − ... ]

and we have found the required Fourier series.

(c) By giving appropriate values to x, show that:
π/4 = 1 − 1/3 + 1/51/7 + ...

Solution:

Putting x = π/2 gives ƒ(x) and:

  π/2 = 2 [ sin π/21/2  sin 2π/2 + 1/3  sin 3π/21/4  sin 4π/2 + 1/5  sin 5π/2 − ... ]
this gives: π/2 = 2 [ 1 + 0 + 1/3⋅(−1) − 0 + 1/5⋅(1) − 1/7⋅(−1) + ... ]
  π/2 = 2 [ 1 − 1/3 + 1/51/7 + ... ]
i.e.   π/4 = 1 − 1/3 + 1/51/7 + ...

Click on questions to reveal their solution

Exercise 7: Let ƒ(x) be a function of period 2π such that:

ƒ(x) = x2 over the interval −π < x < π
(a) Sketch a graph of ƒ(x) in the interval −2π < x < 2π

Solution:

(b) Show that the Fourier series for ƒ(x) in the interval π < x < 2π is:
π2/ 3 − 4 [ cos x1/22 cos 2x + 1/32 cos 3x − ... ]

Solution:

STEP ONE
a0 = 1/π π π ƒ(x) dx
  = 1/π π πx2dx
  = 1/π [x3/3]π π
  = 1/π ( π3/3(π3/3 ))
  = 1/π ( 2π3/3)
i.e.  a0 = 2π2/3

STEP TWO

an = 1/π π π ƒ(x) cos nxdx
  = 1/π π π x2 cos nxdx   - use integration by parts
  = 1/π { [ x2 ( sin nx/n ) ] π ππ π2x( sin nx/n)dx }
  = 1/π { 1/n (π2 sin π2 sin (−)) − 2/n π πx sin nxdx}
  = 1/π { 1/n (0 − 0) − 2/n π πx sin nxdx} TRIG
  = −2/ π πx sin nxdx   - use integration by parts
  = −2/ { [ x( − cos nx/n ) ] π π π π ( − cos nx/n )dx }
  = −2/ {1/n [x cos nx] ππ + 1/n π πcos nxdx }
  = −2/ {1/n ( π cos  − (−π) cos (−) ) + 1/n⋅0 }
  = −2/ {1π/n ( π(−1)n + π(−1)n ) }
  = −2/ { −2π/n (−1)n }
  = 4/n2 (−1)n
i.e.  n = { 4/n2: neven;
−4/n2: n odd

STEP THREE

bn = 1/π π π ƒ(x) sin nxdx
  = 1/π π π x2 sin nxdx   - use integration by parts
  = 1/π { [ x2 ( − cos nx/n ) ] π ππ π2x( − cos nx/n)dx }
  = 1/π {1/n [x2 cos ] ππ + 2/n π πx cos nxdx}
  = 1/π {1/n (π2 cos π2 cos (−)) + 2/n π πx cos nxdx}
  = 1/π {1/n (π2 cos π2 cos ) + 2/n π πx cos nxdx}
  = 2/πn π πx cos nxdx   - use integration by parts
  = 2/ { [ x( sin nx/n ) ] π π π π ( sin nx/n )dx }
  = 2/ { 1/n (π sin nx − (−π) sin (−)) − 1/n π πsin nxdx }
  = 2/ { 1/n (0 + 0) − 1/n π πsin nxdx }
  = −2/2 π πsin nxdx
i.e.  bn = 0
  ƒ(x) = a0/2 + Σ n=1 [an cos nx + bn sin nx]
- where:  a0 = 2π2/3, an = { 4/πn2: n even
−4/πn2: nodd
  and   bn = 0

 

n 1 2 3 4
an −4(1) 4(1/22) −4(1/32) 4(1/42)
i.e.  ƒ(x) = 1/2 ( 2π2/3 ) −4 [ cos x1/22 cos 2x + 1/32 cos 3x1/42 cos 4x + ... ] + [ 0 + 0 + 0 + ...]
i.e.  ƒ(x) = π2/3 −4 [ cos x1/22 cos 2x + 1/32 cos 3x1/42 cos 4x + ... ]
(c) By giving appropriate values to x, show that:
π2/6 = 1 + 1/22 + 1/32 + 1/42 + ...

Solution:

Set x = π and use the fact that cos  = { 1: n even
−1: nodd
i.e.   cos x 1/22 cos 2x + 1/32 cos 3x1/42 cos 4x + ...
gives:   cos π 1/22 cos 2π + 1/32 cos 3π1/42 cos 4π + ...
i.e.   (−1) 1/22⋅(1) + 1/32⋅(−1) − 1/42⋅(1) + ...
i.e.   −1 1/221/321/42 − ...
= −1⋅( 1 + 1/22 + 1/32 + 1/42 + ...)

- where the term in round brackets is the desired series.

The graph of ƒ(x) gives that ƒ(π) = π2 and the series converges to this value.

Setting x = π in the Fourier series thus gives:

π2 = π2/3 − 4 ( cos π1/22 cos 2π + 1/32 cos 3π1/42 cos 4π + ...)
π2 = π2/3 − 4 ( −1 − 1/221/321/42 − ...)
π2 = π2/3 + 4 ( 1 + 1/22 + 1/32 + 1/42 + ...)
2π2/3 = 4 ( 1 + 1/22 + 1/32 + 1/42 + ...)
   π2/6 = 1 + 1/22 + 1/32 + 1/42 + ...

Click on questions to reveal their solution

3. Standard Integrals

Formula for integration by parts: b audv/ dxdx = [uv] bab adu/ dxvdx

ƒ(x) ƒ(x) dx   ƒ(x) ƒ(x) dx
xn xn+1/ n+1 (n ≠ −1)   [g(x)]ng'(x) [g(x)]n+1/ n+1 (n ≠ −1)
1/x ln x   g'(x)/g(x) ln g(x)
ex ex   ax ax/ln a (a > 0)
sin x −cos x   sinh x cosh x
cos x sin x   cosh x sinh x
tan x − ln cosx   tanh x ln cosh x
cosec x ln tan  x/2   cosech x ln tanh  x/2
sec x ln sec x + tan x   sec x 2 tan−1ex
sec2x tan x   sec2x tanh x
cot x ln sin x   cot x ln sinh x
sin2x x/2sin 2x/4   sinh2x sinh 2x/4x/2
cos2x x/2 + sin 2x/4   cosh2x sinh 2x/4 + x/2
1/ a2 + x2 1/ a tan −1x/ a   (a > 0)   a2 + x2 a2/ 2 [ sinh−1( x/ a ) + x a2x2 / a2 ]
1/ a2x2 1/ 2a ln  a + x/ ax    (0 < x < a)   a2x2 a2/ 2 [ sin−1( x/ a ) + x a2x2 / a2 ]
1/ x2a2 1/ 2a ln  xa/ x + a   (x > a > 0)   x2a2 a2/ 2 [−cosh−1( x/ a ) + x x2a2 / a2 ]
1/ a2 + x2 ln  x + a2 + x2 /a   (a > 0)      
1/ a2x2 sin−1x/ a     (−a < x < a)   1/ x2a2 ln  x + x2a2 / a   (x > a > 0)

4. Useful Trig Results

When calculating the Fourier coefficients an and bn, for which n = 1, 2, 3, ..., the following trig. results are useful. Each of these results, which are also true for n = 0, −1, −2, −3, ..., can be deduced from the graph of sin x or that of cos x:

 
sin    cos  = (−1)n

 

 
sin n π/2 = {  0 : n even
 1 : n = 1, 5, 9, ...
−1 : n = 3, 7, 11, ...
  cos n π/2 = {  0 : n odd
 1 : n = 0, 4, 8, ...
−1 : n = 2, 6, 10, ...

 

Areas cancel when integrating over whole periods:

  2π sinx dx = 0

  2π cosx dx = 0

 

5. Alternative Notation

For a waveform ƒ(x) with period L = 2π/k

ƒ(x) = a0/2 + Σ n=1 [ancos nkx + bnsin nkx]

the corresponding Fourier coefficients are:

STEP ONE a0 = 2/L   Lƒ(x) dx
STEP TWO an = 2/L   Lƒ(x) cos nxdx
STEP TWO bn = 2/L   Lƒ(x) sin nxdx

- where integrations are over a single interval in x of L

For a waveform ƒ(x) with period 2L = 2π/k, we have:   k = 2π/2k = π/k and nkx = nπx/L.

ƒ(x) = a0/2 + Σ n=1 [ancos  nπx/L + bnsin  nπx/L]

the corresponding Fourier coefficients are:

STEP ONE a0 = 1/L   2Lƒ(x) dx
STEP TWO an = 1/L   2Lƒ(x) cos nπx/Ldx
STEP TWO bn = 1/L   2Lƒ(x) sin nπx/Ldx

- where integrations are over a single interval in x of 2L

For a waveform ƒ(t) with period T = 2π/ω

ƒ(t) = a0/2 + Σ n=1 [ancos nωx + bnsin nωx]

The corresponding Fourier coefficients are:

STEP ONE a0 = 2/T   Lƒ(x) dx
STEP TWO an = 2/T   Lƒ(x) cos nωtdx
STEP TWO bn = 2/T   Lƒ(x) sin nωtdx

- where integrations are over a single interval in t of T

PPLATO material © copyright 2004, University of Salford