1. Theory

Consider an integral of the form:

  ƒ(ax + b)

where a and b are constants. We have here an unspecified function ƒ of a linear function x.

Letting u = ax + b, then du/dx = a, and this gives dx = du/a

This allows us to change the integration variable from x to u.

  ƒ(ax + b) dx =   ƒ(u)du/a

The final result is

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where u = ux + b

This is a general result for integrating functions of a linear function x.

Each application of this result involves dividing by the coefficient of x and then integrating.

2. Exercises

Perform the following integrations.

Click on the questions to reveal their solution

Exercise 1:

  (2x − 1)3dx

Solution: Let u = 2x − 1, then du/dx = 2 and dx = du/2.

  (2x−1)3dx =   u3 du/2 = 1/2  u3du
  = 1/21/4 u4+C
  = 1/8 (2x − 1)4 + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 2 and   ƒ(u) du is   u3du.

Exercise 2:

  cos (3x + 5) dx

Solution: Let u = 3x + 5, then du/dx = 3 and dx = du/3.

  cos (3x + 5) dx =   cos (u)⋅du/3 = 1/3  cos (u) du
  = 1/3 sin (u) + C
  = 1/3 sin (3x + 5)4 + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 3 and   ƒ(u) du is   cos (u) du.

Exercise 3:

  e5x + 2dx

Solution: Let u = 5x + 2, then du/dx = 5 and dx = du/5.

  e5x+2dx =   eudu/5 = 1/5  eudu
  = 1/5 eu + C
  = 1/5 e5x + 2 + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 5 and   ƒ(u) du is   eudu.

Exercise 4:

  sinh (3x) dx

Solution: Let u = 3x, then du/dx = 3 and dx = du/3.

  sinh (3x) dx =   sinh (u)⋅du/3 = 1/3  sinh (u) du
  = 1/3 cosh (u) + C
  = 1/3 cosh (3x) + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 3 and   ƒ(u) du is   sinh (u) du.

Exercise 5:

  dx2x − 1

Solution: Let u = 2x − 1, then du/dx = 2 and dx = du/2.

  dx2x − 1 =   duu12 = 1/2  duu
  = 1/2 ln u + C
  = 1/2 ln 2x − 1 + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 2 and   ƒ(u) du is   du/u

Exercise 6:

  dx1 + (5x)2

Solution: Let u = 5x − 1, then du/dx = 5 and dx = du/5.

  dx1 + (5x)2 =   du1 + u215 = 1/5  du1 + u2
  = 1/5 tan−1u + C
  = 1/5 tan−1 5x + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 5 and   ƒ(u) du is   du/1 + u2

Exercise 7:

  sec2 (7x + 1) dx

Solution: Let u = 7x + 1, then du/dx = 7 and dx = du/7.

  sec2 (7x + 1) dx = 1/7  sec2udu
  = 1/7 tanu + C
  = 1/7 tan (7x + 1) + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 7 and   ƒ(u) du is   sec2udu.

Exercise 8:

  sin (3x − 1) dx

Solution: Let u = 3x − 1, then du/dx = 3 and dx = du/3.

  sin (3x − 1) dx = 1/3  sin (u) du
  = 1/3 cos (u) + C
  = 1/3 cos (3x − 1) + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 3 and   ƒ(u) du is   sin (u) du.

Exercise 9:

  cosh (1 + 2x) dx

Solution: Let u = 1 + 2x, then du/dx = 2 and dx = du/2.

  cosh (1 + 2x) dx = = 1/2   cosh (u) du
  = 1/2 sinh (u) + C
  = 1/2 sinh (1 + 2x) + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 2 and   ƒ(u) du is   cosh (u) du.

Exercise 10:

  tan (9x − 1) dx

Solution: Let u = 9x − 1, then du/dx = 9 and dx = du/9.

  tan (9x − 1) dx =   tan(u) du/9 = 1/9  tan (u) du
  = 1/9 ln cos (u) + C
  = 1/9 ln cos (9x − 1) + C

Note: The final result can also be obtained using the general pattern:

  ƒ(ax + b) dx = 1/a  ƒ(u) du

- where a = 9 and   ƒ(u) du is   tan (u) du.

3. Standard Integrals

ƒ(x) ƒ(x) dx   ƒ(x) ƒ(x) dx
xn xn+1/n+1 (n ≠ −1)   [g(x)]ng'(x) [g(x)]n+1/n+1 (n ≠ −1)
1/x ln x   g'(x)/g(x) ln g(x)
ex ex   ax ax/ln a (a > 0)
sin x −cos x   sinh x cosh x
cos x sin x   cosh x sinh x
tan x − ln cosx   tanh x ln cosh x
cosec x ln tan  x/2   cosech x ln tanh  x/2
sec x ln sec x + tan x   sec x 2 tan−1ex
sec2x tan x   sec2x tanh x
cot x ln sin x   cot x ln sinh x
sin2x x/2sin 2x/4   sinh2x sinh 2x/4x/2
cos2x x/2 + sin 2x/4   cosh2x sinh 2x/4 + x/2
1/a2 + x2 1/a tan −1x/a   (a > 0)   a2 + x2 a2/2[ sinh−1(x/a) + x a2x2/a2]
1/a2x2 1/2a ln  a + x/ax    (0 < x < a)   a2x2 a2/2[ sin−1(x/a) + x a2x2/a2]
1/x2a2 1/2a ln  xa/x + a   (x > a > 0)   x2a2 a2/2[−cosh−1(x/a) + x x2a2/a2]
1/ a2 + x2 ln  x + a2 + x2/a   (a > 0)      
1/ a2x2 sin−1x/a     (−a < x < a)   1/ x2a2 ln  x + x2a2/a   (x > a > 0)

PPLATO material © copyright 2004, University of Salford