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Abstract
We present a FP-LMTO (full-potential linear muffin-tin orbital) study of the variation in the
electronic structure, phonon frequencies and electron–phonon coupling in hexagonal close
packed (hcp) Sc under pressure. The electron–phonon coupling constant λ is found to increase
steadily with pressure in the hcp phase, until the pressure reaches a value where the hcp phase
becomes unstable. Linear response calculations for the normal pressure c/a ratio predict a
phase change somewhere between calculated pressures of 22 and 30 GPa. The calculated
frequencies for the equilibrium hcp lattice parameters are in good agreement with the inelastic
neutron scattering results. There is a small upward shift in the �-point E2g mode frequency
under pressure, in qualitative agreement with the Raman spectroscopy study of Olijnyk et al
(2006 J. Phys.: Condens. Matter 18 10971). From the measured value of the electronic specific
heat constant and the calculated values of the Fermi level density of states and electron–phonon
coupling constant, we conclude that the electron–paramagnon coupling constant in hcp Sc
should be comparable to the electron–phonon coupling constant. This indicates that the spin
fluctuation effects are strong enough to suppress superconductivity completely in hcp Sc. We
argue that spin fluctuations should be reduced by a factor of two or more in the high pressure
Sc-II phase. On the basis of estimates of the electron–paramagnon coupling constants and the
calculated or estimated electron–phonon coupling constants, we argue that the hcp phase may
become superconducting with a very low transition temperature immediately prior to the
transition to the Sc-II phase and that the Sc-II phase should indeed be superconducting. The
electronic, electron–phonon and spin fluctuation properties of hcp Sc under pressure are
compared with those of the high pressure hcp phase of Fe, which was reported to be
superconducting a few years back.

1. Introduction

This work was motivated by a recent work of Hamlin
and Schilling [1], who reported the measurement of the
superconducting transition temperature Tc in Sc as a function
of pressure. Superconductivity in Sc is induced under pressure,
with Tc increasing monotonically to 8.2 K at 74.2 GPa. Hamlin
and Schilling [1] report measurements of Tc between ∼55 GPa
(Tc ∼ 5 K) and 74.2 GPa (Tc = 8.2 K). The normal pressure
phase of Sc is hcp and it is known to undergo several changes
in its crystal structure as a function of pressure, the first such
transition known to be occurring around 22–23 GPa [3–5] from

hcp (Sc-I) to a complicated structure, referred to as Sc-II. To
date the normal and low pressure hcp phase is known to be
non-superconducting. Earlier work by Wittig et al [2] showed
that superconductivity is possibly induced in the hcp phase at
high pressure around 20 GPa, immediately before it enters the
complex Sc-II phase. Tc in the hcp phase was estimated to be
less than 0.1 K.

Ab initio theoretical studies of superconductivity in Sc
as a function of pressure is rendered difficult by the fact that
the superconducting Sc-II phase is not only complex, but also
that its exact structure still remains open to investigation and
refinement [3–5]. Ormeci et al [22] have studied the electronic
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structure of the Sc-II phase proposed by Fujihisa et al [3]
and McMahon et al [5] and produced results suggesting that
the structure proposed by McMahon et al might provide
a better representation of the Sc-II phase. Both of these
proposed structures are composite incommensurate structures,
consisting of host and guest substructures.

In this communication we present ab initio calculations
of the electronic structure, elastic properties, phonons and
electron–phonon coupling in the low pressure hcp phase of
Sc. The purpose is to shed some light on why hcp Sc
is not superconducting, while the substance might become
superconducting under pressure. Several scenarios are
possible. It might be that the electron–phonon coupling in
the hcp phase is small, making superconductivity unlikely in
this phase. This coupling may increase with pressure, but still
remain too small for superconductivity to appear over the entire
pressure range for which the hcp phase is stable. Another
possibility is that the electron–phonon coupling is strong
enough to support superconductivity in the hcp phase. In this
latter scenario one needs to explore why superconductivity
is suppressed in the hcp phase and appears only in the high
pressure Sc-II phase. Calculations of the phonon frequencies
as a function of pressure should also show softening of certain
modes leading to the instability of the hcp phase at high
pressure.

We use the full-potential linear muffin-tin orbital (FP-
LMTO) method [6] to study the electronic structure and
the linear response scheme developed by Savrasov [7, 8]
to compute the phonon frequencies, the Eliashberg spectral
function and the electron–phonon coupling constant λ as a
function of volume in hcp Sc. For the sake of simplicity and
convenience in the calculation, the c/a ratio is kept fixed at
the normal pressure value [9]. This restriction of the c/a ratio
being kept fixed at the normal pressure value should not be
of any concern from the viewpoint of the main results and
conclusions of this work. This will become clear from the
discussion in the following sections.

Sc is the lightest of the 3d-transition metals. It would be
of interest to see how the electron–phonon coupling in hcp
Sc compares with that of the late transition metal hcp Fe,
which was reported to be superconducting by Shimizu et al
[10] (see also [11]) a few years back. The hcp phase is the
stable phase of Fe at pressures ∼10 GPa and higher. Bose
et al [12] reported FP-LMTO linear response results for hcp
Fe. They showed, in agreement with earlier LAPW(linear
augmented plane-wave)-based rigid muffin-tin (RMT) results
of Mazin and co-workers [13], that not only should hcp Fe be
superconducting, but also conventional (electron–phonon) s-
wave superconductivity in hcp Fe should persist up to a much
higher pressure than what is found in the experiments. Both
ferromagnetic and antiferromagnetic spin fluctuation effects
were considered in the works of Bose et al [12] and Mazin
et al [13]. The conclusion was that such spin fluctuation effects
in hcp Fe could lower Tc somewhat, but could not account
for the rapid disappearance of Tc with increasing pressure,
as observed by Shimizu et al [10]. Nontrivial differences
between the electronic structures of Fe and Sc, due in particular
to the large difference in the number of d-electrons, cause
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Figure 1. FP-LMTO total energy per atom versus the lattice
parameter in hcp Sc for the c/a = 1.592, valid for the normal
pressure values: a = 3.31 Å, c = 5.27 Å [9]. For convenience in
plotting, a constant value of −1529.0 Ryd from the total energy per
atom has been subtracted.

significant differences in their elastic as well as electron–
phonon scattering properties, which should have opposite
effects on the overall electron–phonon coupling constant.

Ormeci et al [22] have used crystalline approximants of
the incommensurate structures proposed by Fujihisa et al [3]
and McMahon et al [5] in studying the electronic structure of
the Sc-II phase. The unit cells of these approximants contain
22 atoms for the model proposed by Fujihisa et al [3] and
42 atoms for the model suggested by McMahon et al [5].
Because of the high computational demand due to the large
number of atoms in the unit cells of these approximants, we are
unable to extend the linear response calculations of phonons
and electron–phonon coupling to the Sc-II phase.

2. Electronic structure

FP-LMTO results of total energy as a function of the lattice
parameter in hcp Sc is shown in figure 1. The c/a ratio
was kept fixed at the normal pressure value [9]. As in the
earlier calculation for hcp Fe [12], the generalized gradient
approximation of Perdew and Wang (GGA1) [14] for the
exchange–correlation potential was used. The electronic
structure was computed using a two-κ spd LMTO basis
for the valence band. 3s- and 3p-semi-core states were
treated as valence states in separate energy windows. The
charge densities and potentials were represented by spherical
harmonics with l � 6 inside the non-overlapping MT spheres
and by plane waves with energies � 48–70 Ryd, depending on
the lattice parameter, in the interstitial region. Brillouin zone
(BZ) integrations were performed with the full-cell tetrahedron
method [15], using 1200 k-points in the irreducible zone. The
pressure and bulk modulus calculated from this energy-volume
curve, using the generalized Birch–Murnaghan equation of
state [16, 17], are shown in table 1. Note that the minimum
energy occurs almost exactly at the normal pressure lattice
parameter of 6.255 au. The calculated bulk modulus of
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Figure 2. FP-LMTO DOSs for three lattice parameters of hcp Sc:
(a) normal pressure values [9]: a = 6.255 au, c/a = 1.592,
(b) a = 5.75 au and (c) a = 5.60 au; c/a ratio for (b) and (c) is the
same as in (a). It appears that as the Fermi level moves from the
shallow valley region between two small peaks (a) to a shoulder (c),
the hcp structure becomes unstable.

Table 1. FP-LMTO results for hcp Sc for the normal pressure c/a
ratio, 1.592. a = lattice parameter (au), V0 = volume per atom (au),
P = pressure (GPa), B = bulk modulus (GPa), N(0) = DOS at the
Fermi level (states/(Ryd cell)).

a 6.255 6.15 6.05 5.95 5.85 5.75
V0 168.72 160.37 152.67 145.22 138.02 131.07
P −0.084 3.21 6.85 11.22 16.20 22.28
B 56.2 67.2 79.6 93.0 108 125
N(0) 58.06 54.82 51.59 49.07 47.27 47.71

56 GPa at this [9] equilibrium lattice parameter is somewhat
higher than the experimental value, 43.5 GPa. One interesting
observation is that the lattice parameter 5.75 au, or the volume
per atom V0 = 131 au, corresponds to a pressure of 22 GPa.
This is the pressure at which the hcp Sc-I phase becomes
unstable against the formation of a complicated structure
known as the Sc-II phase [3–5]. As will be discussed later,
the linear response results show that the phonon frequencies
calculated for lattice parameter a = 5.6 au are imaginary.
Thus, for the normal pressure c/a ratio, the hcp structure
becomes unstable at some lattice parameters between 5.75 and
5.6 au. The calculated pressure at 5.6 au is ∼30 GPa. Given the
uncertainties in the pressure calculation, this result is in good
agreement with the experimental observation of a phase change
in Sc at 22–23 GPa. Additional linear response calculations to
better locate the phase change were not done.

The FP-LMTO DOS calculated for three lattice parame-
ters are shown in figure 2. Panel (a) shows the DOS for the
experimental normal pressure lattice parameters: a = 3.31 Å,
c = 5.27 Å [9]. Panels (b) and (c) show the DOSs for the lat-
tice parameters 5.75 and 5.60 au, respectively, with the same
c/a ratio as in (a). For the equilibrium lattice parameters (panel
(a)), the Fermi level falls in a shallow valley between two small
peaks. With increasing pressure, the bands broaden, flattening
these peaks and the valley region (panel (b)). It appears that as

Table 2. LMTO-ASA results for (approximate) s-, p-, d- and
f-orbital resolved charges: ns, np, nd, nf and the corresponding Fermi
level DOSs: Ns, Np, Nd, Nf. n′ = nd+nf

ns+np
, n− = (nd + nf) − (ns + np)

and N ′ = Nd+Nf
Ns+Np

are presented to reveal the trends in the inter-orbital
charge transfer and the redistribution of the orbital-resolved DOSs as
a function of volume per atom. N(0) is the total DOS at the Fermi
level. All DOSs are in units of states/(Ryd cell). a = lattice
parameter (au).

a 6.255 6.15 6.05 5.95 5.85 5.75
ns 0.730 0.720 0.714 0.704 0.695 0.685
np 0.690 0.677 0.662 0.645 0.626 0.603
nd 1.545 1.567 1.589 1.614 1.641 1.672
nf 0.031 0.033 0.034 0.036 0.037 0.039
n− 0.156 0.203 0.247 0.301 0.357 0.423
n′ 1.11 1.15 1.18 1.22 1.27 1.33

N(0) 57.89 54.78 53.03 51.60 50.16 53.34
Ns(0) 0.941 0.946 0.964 0.982 1.020 1.226
Np(0) 14.836 13.729 12.889 12.257 11.914 13.558
Nd(0) 40.789 39.110 37.887 37.080 36.444 37.222
Nf(0) 1.326 1.301 1.287 1.280 1.280 1.335
N ′ 2.67 2.75 2.83 2.90 2.92 2.60

this region around the Fermi level changes to a shoulder (panel
(c)), the hcp phase becomes unstable.

Hamlin and Schilling [1] discuss the importance of the
role of s → d charge transfer in the variation of electron–
phonon coupling and the changes in the crystal structure under
pressure. Pettifor [18] has discussed the variation of the d-band
occupancy under pressure of 4d-transition metals, showing that
the increase in the d-electron occupancy of the early transition
metals under pressure is rapid. Duthie and Pettifor [19]
used a s–d band model to discuss the correlation between
the d-band occupancy and the crystal structures in rare-earths.
They showed that d-electron concentration nd increases under
pressure and a sequence of crystal structure changes takes place
as nd changes from 1.5 to 2.5. With increasing pressure,
the volume available to the electrons outside the ion cores
diminishes rapidly. As a result, simple metals like Li and Na
are known to become non-free-electron-like under pressure and
Cs is known to become a transition metal as the 5d-band begins
to fill due to s → d charge transfer (see references in [1]). In
any electronic structure calculation the numbers of s-, p- and
d- electrons are essentially functions of the basis set used, if
such a division is at all possible for the method used. It is
easier to keep track of s → d charge transfer in LMTO-ASA
(atomic sphere approximation) [20], where the basis consists of
muffin-tin orbitals only, rather than in FP-LMTO. In table 2 we
present the orbital- or partial wave channel-resolved electron
numbers as a function of the lattice parameter, as obtained by
the LMTO-ASA method1. The results presented were obtained
by using the exchange correlation potential of Perdew and
Wang [21] in the local density approximation. Checks for a
couple of lattice parameters using GGA1 [14] had revealed
similar results. The decrease in ns and the increase in nd

are monotonic as a function of decreasing lattice parameters.

1 Inside each muffin-tin (atomic) sphere there is a small contribution from
the tails of orbitals centered about the surrounding spheres. This may cause
a disproportionate increase in the high l-components, particularly l = 3. The
increase in the nf with decreasing volume may be partly due to this effect.
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Table 3. Hopfield parameters from the linear response calculation η and the rigid muffin-tin (atomic sphere) approximation η (RMT/RAS),
the Fermi surface average of the square of the electron–phonon matrix element 〈I 2〉 and 〈I 2〉 (RMT/RAS) from the linear response and the
RMT results, respectively; logarithmic average phonon frequencies ωln; maximum phonon frequencies ωm , average phonon frequencies
ω̄ = 〈ω〉 and ω̃ = 〈ω2〉1/2; the �-point E2g mode frequency ω(E2g); Coulomb pseudopotentials for Eliashberg equation (μ∗(ωc)) and
McMillan formula (μ∗

ln); electron–phonon coupling parameters λph; calculated critical temperatures (T calc
c ) from the solution of the Eliashberg

equations (2) and the critical temperatures from the McMillan formula (9) (T McM
c ) for various lattice parameters a.

a aB 6.255 6.15 6.05 5.85 5.75
η Ryd/bohr2 0.0381 0.0433 0.0519 0.0666 0.0771
〈I 2〉 (Ryd/bohr)2 0.0026 0.0031 0.0040 0.0056 0.0065
η (RMT/RAS) Ryd/bohr2 0.0439 0.0509 0.0591 0.0826 0.1077
〈I 2〉 (RMT/RAS) (Ryd/bohr)2 0.0030 0.0037 0.0045 0.0065 0.0081

ωln
K 160.4 195.0 198.1 195.4 177.7
cm−1 111.5 135.5 137.7 135.8 123.5

ωm cm−1 214.5 230.4 246.9 279.6 294.7
ω(E2g) cm−1 130.5 134.95 133.4 136.14 135.0
ω̄ cm−1 122.4 142.3 145.1 145.6 135.3
ω̃ cm−1 131.5 148.6 152.3 155.8 148.1
μ∗(ωc) 0.253 0.256 0.260 0.266 0.269
μ∗(ωln) 0.160 0.161 0.163 0.165 0.166
λph 0.639 0.576 0.657 0.807 1.033

T McM
c K 2.34 1.66 2.96 5.66 9.18

T calc
c K 2.17 1.75 3.13 6.00 9.64

In fact, charge transfer takes place from the extended s- and
p-orbitals to the less extended or localized d- and f-orbitals.
Of particular interest are n′ and n−, defined as n′ = nd+nf

ns+np

and n− = (nd + nf) − (ns + np), quantifying the transfer
of electrons from the delocalized to the localized channels.
At normal pressure the electrons are divided almost equally
between the localized and delocalized channel (n− = 0.15).
With increasing pressure the electrons more and more occupy
the localized orbitals.

As the pressure increases different partial bands broaden
at different rates. In table 2 we also show the changes in
partial or angular momentum-resolved DOSs at the Fermi
level. The ratio of the localized orbital DOSs (Nd(0) + Nf(0))
to the delocalized orbital DOSs (Ns(0) + Np(0)) seem to
increase steadily under pressure, except for the lowest lattice
parameter shown. The decrease in N ′ for the lattice parameter
5.75 au could be specific to LMTO-ASA, as the somewhat
large change in N(0) between the lattice parameters 5.85 and
5.75 au is not observed in the FP-LMTO results (table 1).

Ormeci et al [22] have calculated the partial charges in the
high pressure Sc-II phase. They use the full-potential local-
orbital (FPLO) method of Koepernik and Eschrig [23] with
an spd-basis. At ambient pressure, in the hcp structure, their
nl-projected charges for the 4s, 4p, and 3d channels are 0.70,
0.59 and 1.70, respectively. In the Sc-II phase at about two
thirds of the ambient pressure volume per atom, these numbers
become 0.54–0.65, 0.27–0.51, and 1.92–2.05, respectively.
Their calculations also suggest that a complete s → d charge
transfer would require pressures in excess of 240 GPa.

3. Phonons and electron–phonon coupling

The FP-LMTO linear response results for phonons and
electron–phonon coupling are summarized in table 3. The
dynamical matrix was generated for 32 phonon wavevectors
in the irreducible BZ, corresponding to a mesh of (7, 7, 7)

reciprocal lattice divisions. The BZ sums for the dynamical
and electron–phonon (Hopfield) matrices was done for a (28,
28, 28) mesh, resulting in 1200 wavevectors in the IBZ. These
choices were based on extensive tests performed by Savrasov
and Savrasov [7, 8] in their study of the phonons and electron–
phonon coupling in elemental metals and alloys. Phonon
density of states F(ω), Eliashberg spectral function α2 F(ω)

and the function α2(ω) = α2 F(ω)/F(ω) are shown in figure 3
for three different lattice parameters with the c/a ratio fixed at
the normal pressure value.

The calculated phonon frequencies appear to be in
reasonably good agreement with the inelastic neutron
scattering (INS) results [24, 25]. For the normal pressure
lattice parameter (6.255 au), the calculated longitudinal and
transverse optic (LO and TO) mode frequencies at the �-
point are 6.273 THz (209 cm−1) and 3.912 THz (130.5 cm−1),
respectively. These compare well with the inelastic neutron
scattering results of Wakabayashi et al [24]: 6.91 and 4.04 THz
for the LO and TO modes, respectively. The recent Raman
spectroscopy study of Olijnyk et al [26] puts the TO mode
(E2g) frequency at a somewhat higher value of 139 cm−1.
On the whole, the calculated frequencies are a bit lower than
the INS results of Wakabayashi et al [24]. These authors
have analyzed the INS results in terms of a sixth-neighbor
modified axially symmetric force constant model and produce
a frequency distribution, which reveals a maximum frequency
of about 7.25 THz or 241.8 cm−1, approximately 10% higher
than the maximum calculated frequency 215 cm−1 (table 3) in
this work. The shape of the frequency distribution agrees in
general with the phonon DOS F(ω) shown in figure 3, except
for the relative heights of some of the low frequency peaks.

The Raman spectroscopy work by Olijnyk et al [26] shows
a shift of the E2g frequency under pressure from 139 cm−1

to about 150 cm−1 at 18.8 GPa. The calculated �-point TO
mode frequency increases from 130.5 cm−1 at the normal
pressure lattice parameter (a = 6.255 au) to 135.1 cm−1 at

4



J. Phys.: Condens. Matter 20 (2008) 045209 S K Bose

a=6.255 a.u. a=6.05 a.u a=5.75 a.u.

St
at

es
 (

1/
cm

-1
)

α2(ω)

F(ω)

α2
F (ω)

5

10
cm

-1

0

15

0 50 100 150 200

0

0.05

0.1

0 50 100 150 200

0

0.2

0.4

50 100 150

Frequency (cm-1)

0 200
0

0.2

0.4

0.6

0.8

50 100 150 200

Frequency (cm-1)

0 250

50 100 150 2000 250

50 100 150 2000 250
0

5

10

15

0

0.05

0.1

0

10

20

0 100 200 300

0 100 200 300

100 200

Frequency (cm-1)

0 300

0.02

0.04

0.06

0.08

0

0

0.2

0.4

0.6

0.8

Figure 3. Phonon density of states F(ω), the Eliashberg spectral function α2 F(ω) and the function α2(ω), defined as the ratio
α2 F(ω)/F(ω), for three lattice parameters a = 6.255 (experimental normal pressure value), 6.05, and 5.75 au, with c/a ratio fixed at the
normal pressure value.

a = 5.75 au, i.e., the increase is much more subdued. In
table 3 we have presented the calculated E2g frequency for
various lattice parameters. Although the variation may seem
non-monotonic, the differences are very much within the error
bars of the calculation. What can perhaps be concluded is that
there is no phonon softening and most probably this frequency
does increase by approximately 5 cm−1. This is about 45–50%
of the observed shift. Note that calculations for the stable hcp
phase for a lattice parameter between 5.75 and 5.6 au might
reveal a higher shift. The discrepancy between the calculated
and the observed shift could be partly due to the possible
variation in the c/a ratio under pressure, which has not been
considered in the calculation. Olijnyk et al [26] have analyzed
the shift in the E2g frequency in terms of the relation

μE2g = 1

2π

(
4
√

3a2C44

mc

)1/2

, (1)

where m is the atomic mass and C44 is the elastic shear
modulus. They relate their result to the behavior of the
shear modulus at the transition. The possible variation
of the c/a ratio with pressure should be factored in this
discussion. The coarse wavevector mesh used for the phonon
frequency calculation prevents us from using the slope of
the phonon dispersion curves or the long wavelength method
to compute the elastic constants. Ab initio calculation of
the elastic constants, including C44, via long wavelength and

homogeneous deformation methods using energy-minimized
c/a ratios will be the subject of a separate publication.

It is noteworthy that both calculation and the Raman study
show a positive shift of the E2g frequency, in contrast to the
behavior in Y and the regular Lanthanides, where a softening
of the E2g mode under pressure is associated with the transition
to the high pressure Sm-type structure [27, 28]. Incidentally,
in our linear response calculation, as the lattice parameter is
lowered to 5.6 au where the instability of the hcp phase is
manifest via the appearance of some imaginary frequencies,
the E2g mode frequency stays real and has a lower value
124 cm−1. At a lattice parameter of 5.2 au, this frequency,
along with many others, are imaginary.

Broadening of the phonon bands and the increase in
the maximum phonon frequencies with pressure is apparent
in figure 3. Maximum phonon frequency increases from
215 to 295 cm−1, as the lattice parameter changes from the
normal pressure value to 5.75 au, where the estimated pressure
(table 1) is 22–23 GPa. Note that with increasing pressure,
initial increases in ω̄, ω̃ and ωln are followed by a decrease,
revealing phonon softening. At normal pressure, the shape of
the α2 F(ω) function follows that of the phonon DOS F(ω).
With increasing pressure, differences between the shape of
the two functions appear due to increased contribution from
low frequency phonons, a consequence of phonon softening.
There is a feed-back effect: electron–phonon coupling leads
to both phonon linewidth and renormalization of the phonon
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frequency, and the latter, in turn, affects the coupling constant.
Unfortunately, the 7, 7, 7 division of the BZ misses most
of the symmetry points. However, it appears that there
are several regions of the wavevector space that show large
mode coupling. Linear response calculations for the lattice
parameter 5.6 au show that the phonon frequency at the
wavevector closest to the L-point for the 7, 7, 7 division
becomes imaginary first. For the lattice parameter 5.75 au,
this wavevector has a very large mode coupling constant. In
table 3, it is clear that general phonon softening starts as the
lattice parameter increases beyond 6.05 au (as seen from ωln) or
5.85 au (as seen from ω̄ and ω̃), while the E2g mode continues
to stiffen and the maximum phonon frequency continues to
increase.

The electron–phonon coupling parameter λph is a
combination of an electronic parameter (Hopfield parameter)
η = 〈I 2〉N(0) (N(0) being the Fermi level DOS for one
type of spin) and the mean square phonon frequency 〈ω2〉:
λph = η/m〈ω2〉. 〈I 2〉 is the Fermi surface average of the
square of the electron–phonon matrix element. The electronic
and phonon-related parameters act in opposite directions in
affecting the coupling constant: λ is enhanced by having
higher 〈I 2〉 at lower frequency. As the Hopfield parameter
for transition metals has often been calculated using the rigid
muffin-tin approximation of Gaspari and Gyorffy [30], in
table 3 we have compared the values obtained via the FP-
LMTO linear response method (η) and those obtained by
using the RMT scheme implemented within the LMTO-ASA
method [31, 32], known as the rigid atomic sphere (RAS)
method. The latter values, labeled as η(RMT/RAS), are
in general agreement with the FP-LMTO results, but are
somewhat overestimated, with the level of the overestimation
increasing with pressure. This is in contrast with the results
for the late transition metal hcp Fe, where RAS was shown
to consistently underestimate the Hopfield parameter, with the
level of the underestimation increasing with pressure [12]. The
values of the Fermi surface averaged electron–phonon matrix
element 〈I 2〉, obtained from the linear response calculation and
by using the RMT approximation, are also shown in table 3.

4. Superconductivity in hcp Sc, based purely on
electron–phonon coupling

Since ab initio results of the electron–phonon coupling in hcp
Sc have not been reported in the literature, it would be of
some interest to derive values of the superconducting transition
temperature Tc based on the present calculations. Indeed, the
values of the coupling constant λph listed in table 3 suggest
that Tc could be high enough to be experimentally observable.
The superconducting transition temperature can be obtained
by solving the linearized isotropic Eliashberg equation at Tc

(see, e.g., [29]):

Z(iωn) = 1 + πTc

ωn

∑
n′

W+(n − n′) sgn(ωn′),

Z(iωn)	(iωn) = πTc

|ωn|	ωc∑
n′

W−(n − n′)
	(iωn′)

|ωn′ | ,

(2)

where ωn = πTc(2n + 1) is a Matsubara frequency, 	(iωn)

is an order parameter and Z(iωn) is a renormalization factor.
Interactions W+ and W− contain a phonon contribution λph, a
contribution from spin fluctuations λsf, and effects of scattering
from impurities. With scattering rates γm = 1

2τm
and

γnm = 1
2τnm

referring to magnetic and nonmagnetic impurities,
respectively, the expressions for the interaction terms are:

W+(n − n′) = λph(n − n′) + λsf(n − n′)
+ δnn′(γnm + γm), (3)

and

W−(n − n′) = λph(n − n′) − λsf(n − n′)
− μ∗(ωc) + δnn′(γnm − γm). (4)

The phonon contribution is given by

λph(n − n′) = 2
∫ ∞

0

dω ωα2(ω)F(ω)

(ωn − ωn′)2 + ω2
, (5)

where α2(ω)F(ω) is the Eliashberg spectral function, defined
as

α2 F(ω) = 1

N(0)

∑
k,k′,i j,ν

|gi j,ν
k,k′ |2δ(εi

k)δ(ε
j
k′)δ(ω − ων

k−k′). (6)

Here, gi j,ν
k,k′ is the electron–phonon matrix element, with ν being

the phonon polarization index and k, k′ representing electron
wavevectors with band indices i , and j , respectively. λph(0) =
λph is the electron–phonon coupling parameter, the values of
which are given in table 3. The contribution connected with
spin fluctuation can be written as

λsf(n − n′) =
∫ ∞

0

dω2 P(ω)

(ωn − ω′
n)

2 + ω2
, (7)

where P(ω) is the spectral function of spin fluctuations, related
to the imaginary part of the transversal spin susceptibility
χ±(ω) as

P(ω) = − 1

π

〈|gkk′ |2 Imχ±(k, k′, ω)
〉
FS

,

where 〈〉FS denotes the Fermi surface average. λsf = λsf(0) is
often referred to as the electron-paramagnon coupling constant.
In equation (4), μ∗(ωc) is the screened Coulomb interaction,

μ∗(ωc) = μ

1 + μ ln(E/ωc)
, (8)

with μ = 〈N(0)Vc〉FS being the Fermi surface average of the
Coulomb interaction. E is a characteristic electron energy,
usually chosen as the Fermi energy EF and ωc is a cut-off
frequency, usually chosen ten times the maximum phonon
frequency: ωc � 10ωmax

ph .
For a start, we ignore all consideration of spin fluctuations

and impurity scattering and solve the Eliashberg equation
with only the electron–phonon term and the Coulomb
pseudopotential μ∗(ωc). As is often done, we assume that a
reasonable value for μ is ∼1.0, and from the calculated Fermi
energies EF we obtain μ∗ for all volumes, with the cut-off

6



J. Phys.: Condens. Matter 20 (2008) 045209 S K Bose

frequency ωc assumed to be ten times the maximum phonon
frequency. The values are listed in table 3. As shown in
this table, the superconducting transition temperature in hcp
Sc based on consideration of electron–phonon coupling alone
can be significant, increasing monotonically with pressure
from 2 K to ∼10 K until the instability of the hcp phase
sets in. Interestingly, the Tc values reported by Hamlin and
Schilling [1] for the high pressure Sc-II phase fall in this range,
while no superconducting behavior has been observed in the
hcp phase.

For pedagogical reasons, we have listed in table 3 the
values of Tc obtained by using the Allen-Dynes form [29] of
the McMillan expression:

Tc = ωln

1.2
exp

{
− 1.04

(
1 + λph

)
λ − μ∗(1 + 0.62λph)

}
, (9)

where ωln is the logarithmically averaged phonon frequency
[29], obtained from our linear response calculations and
reported in table 3. Note that the Coulomb pseudopotential μ∗
appearing in the McMillan equation above is related to μ∗(ωc)

appearing in the Eliashberg equation via [29]

μ∗ = μ∗ (ωln) = μ∗(ωc)

(1 + μ∗(ωc) ln (ωc/ωm))
. (10)

Our results are computed with ωc/ωm = 10. The Tc

values obtained by solving the Eliashberg equations and those
from the McMillan expression equation (9) show excellent
agreement. Earlier, calculations for hcp Fe [12] had shown
the McMillan expression to overestimate Tc with respect to
the results from the Eliashberg equation, while for fcc and bct
boron an opposite trend was revealed [33].

5. Spin fluctuation effects

5.1. hcp Sc at normal pressure

Faced with the results of the previous section, one needs
to produce convincing arguments as to why hcp Sc is not
superconducting despite sufficiently strong electron–phonon
coupling. A mechanism that is known to cause suppression
of superconductivity is spin fluctuations, which is often quoted
as the reason why fcc Pd is not superconducting [34]. It
is argued that the high value of N(0) in fcc Pd leads
to considerable Stoner enhancement of paramagnetic spin
susceptibility, making it a borderline ferromagnetic material,
and spin fluctuations tending to ferromagnetic alignment of
spins lead to the breaking of the Cooper pairs. That such a
mechanism is operative in hcp Sc as well is highly probable and
has been discussed in the literature on a few occasions [35, 36].
Jensen and Maita [37] argue that the spin fluctuation effects
are responsible for the rapid depression of Tc in the Zr–Sc
alloy system, as Sc is added. Ab initio calculations of the spin
susceptibility of hcp Sc at equilibrium volume based on the
spin-density functional theory by MacDonald et al [38] yield
an exchange–correlation enhancement factor of 4.03 over the
band value and 17.2 over the free-electron value at the same
average electron density as in hcp Sc. An earlier calculation by

Das [36] puts the Stoner enhancement factor at 4.6 (over the
band value). The value calculated for fcc Pd by Janak [39] is
4.46. This shows that the spin fluctuations in hcp Sc should be
as strong as in fcc Pd.

For a proper theoretical treatment of the spin fluctuation
effects one needs to compute λsf(n − n′) from the spin
susceptibility function given by equation (7). However, it
is important to note that such treatments tacitly assume a
Migdal-like theorem being applicable to spin fluctuations.
The Eliashberg equations (equation (2)) are based on the
assumption that the maximum or the cut-off energy of spin
fluctuation is much smaller than the characteristic electronic
energy, e.g. the Fermi level. A somewhat qualitative treatment
of spin fluctuations can be based on estimating λsf =
λsf(0) from experiments. Both electron–phonon and the
electron-paramagnon interactions contribute to the electronic
specific heat. In an independent one-electron picture this is
interpreted as the electronic mass enhancement or equivalently,
enhancement of the density of states over the bare value N(0).
The latter is the value given by calculations, where these
interactions are not included in the one-electron Hamiltonian.
Thus, a reliable estimate of the electron-paramagnon coupling
constant λsf can be obtained from the measured value of the
temperature co-efficient of the electronic specific heat γ , and
the calculated values of the bare electron density of states and
the electron–phonon coupling constant λph:

γ = π2

3
k2

B N∗(0) (11)

N∗(0) = N(0)(1 + λeff) (12)

λeff = λph + λsf. (13)

Here, γ and N(0) refer to the values per atom. The Coulomb
interactions are included in an average sense in the density
functional calculations of N(0), and have therefore been left
out of equation (12).

Among all the elemental metals, excluding the rare-earths,
Sc has the largest electronic specific heat constant γ , followed
by Y and Pd [40]. The reported experimental values at
normal pressure are 10.9–10.33 mJ mol−1 K−2 [25, 37, 40–43].
Considering the latest and the most conservative value of
γ = 10.33 mJ mol−1 K−2 [25, 41], we get N∗(0) =
2.2 states/(eV atom spin). With the calculated value of
1.067 states/(eV atom spin), we get λeff = 1.063. The
calculated value of λph = 0.639 then yields λsf = 0.422.
Effects of spin fluctuations on Tc can be incorporated by a
simple rescaling of λph and the Coulomb pseudopotential μ∗:
λph → λph/(1 + λsf), μ∗ → (μ∗ + λsf)/(1 + λsf) [44]. An
extension of the McMillan formula [13] that is often used to
incorporate the spin fluctuation effects is

Tc = ω
ph
ln

1.2
exp

{
− 1.04(1 + λph + λsf)

λph − λsf − μ∗[1 + 0.62(λph + λsf)]
}

.

(14)
This formula is meaningful as long as λsf is sufficiently less
than λph, so that the denominator in the argument of the
exponential in equation (14) stays positive and not close to
zero. For the above values of λph, λsf and the Coulomb
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pseudopotential μ∗ = 0.16 (see table 3), this condition breaks
down. In fact, for comparable values of λph and λsf, the Kernel
of the Eliashberg equation (equation (2)) W−(n − n′), given
by equation (4), becomes negative, allowing no solution for Tc.
It should be emphasized that the McMillan-type formulas in
the presence of spin fluctuations are good for rough ball-park
estimates of Tc only.

Note that our calculated value of λph = 0.639 for normal
pressure hcp Sc is significantly higher than the value λph = 0.3
that has been suggested by Knapp and Jones [45], based on a
comparison of the high and low temperature electronic specific
heats. A value of λph = 0.3 would suggest λsf = 0.76, more
than twice larger than λph. Our results suggest that λsf < λph,
but their values are close. This leads to the possibility that if
spin fluctuations can be suppressed via application of pressure,
superconductivity can indeed appear.

Based on the analysis of high and low temperature specific
heats, Knapp and Jones [45] also suggested that for Pd λph =
0.7. The electronic specific heat constant γ for Pd is only
slightly lower than that in hcp Sc [40, 45], lying between
10.0 and 9.2mJ mol−1 K−2. The calculated bare band density
of states N(0) for fcc Pd is about 1.3 states/(eV atom spin),
giving λeff in the range 0.66 and 0.5. An analysis by Savrasov
and Savrasov [8] puts the value at 0.69. The value λph = 0.7
suggested by Knapp and Jones would leave no room for spin
fluctuation effects in Pd, and would render Pd superconducting.
The FP-LMTO linear response calculation for fcc Pd by
Savrasov and Savrasov [8] yields λph = 0.35, giving λsf in
the range 0.3–0.15. These values of λph and λsf can adequately
explain the nonexistence of superconductivity in fcc Pd. We
have repeated the linear response calculation for fcc Pd and
obtain a value of λph = 0.37, in close agreement with the
result of Savrasov and Savrasov [8]. Note that the calculation
by Pinski and Butler [46] based on the RMT approximation
yields λph = 0.41 for fcc Pd, in reasonable agreement
with the FP-LMTO linear response results. To summarize,
our linear response calculations and electronic specific heat
analysis show that in both hcp Sc and fcc Pd the values of
electron–phonon and electron–paramagnon coupling constants
are comparable, with the latter being slightly lower. This is
qualitatively different from the previous results of Knapp and
Jones [45], which would suggest that in Sc λph is significantly
lower than λsf, and vice versa for fcc Pd. Note that according
to our results both λph and λsf are larger in hcp Sc than the
corresponding quantities in fcc Pd.

While the nature of spin fluctuations in fcc Pd is accepted
to be ferromagnetic, that in hcp Sc could be antiferromagnetic.
The dynamic susceptibility χ(q, ω) in Pd has a peak at q =
0, whereas χ(q, ω) in hcp Sc is expected to have a peak
at some finite wavevector Q. First-principles calculation of
χ(q) including spin–orbit coupling and all other relativistic
effects by Thakor et al [47] yields a peak at the wavevector
q = (0, 0, 0.57π/c), consistent with a Fermi surface nesting
vector. Earlier calculations produce a peak along the same
direction but at different values [48, 49] of q . Capellmann [35]
has discussed the effect of incipient antiferromagnetism in Sc
and shown that the antiferromagnetic spin fluctuations should
lead to a repulsive electron–electron interaction, resulting in

suppression of superconductivity. The modified McMillan
formula (equation (14)) has been used to estimate Tc for both
ferromagnetic and antiferromagnetic spin fluctuations [12, 13].

5.2. Superconductivity in hcp Sc at high pressure immediately
before the transition to the Sc-II phase

Our linear response calculation yields a high value λph ∼ 1.0
of the electron–phonon coupling constant at the high pressure
hcp phase prior to the transition to the complex Sc-II structure.
It is natural to ask whether spin fluctuations should be able
to suppress superconductivity despite such strong electron–
phonon coupling. Since specific heat data are not available
for such high pressures, a reliable estimate of λsf is difficult.
However, a reasonable step might be to scale the ambient
pressure λsf according to the density of states N(0) at high
pressure shown in table 1. This gives λsf = 0.346 for the
smallest volume or the highest pressure calculation. With
λph = 1.0, λsf = 0.346, μ∗ = 0.166, and ωln = 177.7 K,
as shown in table 3, and using equation (14), we get Tc =
0.14 K. As pointed out earlier, at comparable values of λph

and λsf, equation (14) may not be reliable, and one needs to
solve the Eliashberg equation. However, our estimate of Tc =
0.14 K indicates that there is a possibility of hcp Sc turning
superconducting just before the onset of the high pressure Sc-II
phase. This is indeed what has been reported by Wittig et al [2].
Note that such a conclusion would not be tenable for smaller
values of λph, as the results of Knapp and Jones [45] would
suggest.

The use of the energy-optimized c/a ratio at higher than
ambient pressures may change the calculated values of λph

somewhat, but such small changes are not expected to influence
our results qualitatively and will not affect the nature of the
conclusions.

5.3. Superconductivity in the Sc-II phase

Spin fluctuations are expected to be significantly reduced in
the Sc-II phase. According to the calculations of Ormeci et al
[22], the density of states at the Fermi level N(0) in the Sc-II
structure should be about half the value in the ambient pressure
hcp Sc. This suggests that λsf should be reduced to a value of
0.2 or less. Reasonable choices of ωln in the Sc-II phase at
pressures ∼30 GPa (see table 3) and μ∗ should be 210.0 K and
0.166, respectively. A value of λph = 0.95 in equation (14)
would yield a Tc = 1.4 K. Reducing the value of λsf to 0.1
would result in a Tc of 4.5 K. These numbers suggest that
superconductivity in the Sc-II phase can be explained based
on the quantities calculated for the high pressure hcp Sc and
reasonable estimates of the reduction in the spin fluctuation
effects that is expected as a result of the change in the density
of states. Note that phonon softening causes λph to increase
in the hcp phase immediately before the transition to the Sc-II
structure. At the start of the Sc-II phase the value of λph should
be somewhat less than the value 1.033 shown in table 3, hence
the choice 0.95. It should be noted that although the density
of states N(0) decreases with increasing pressure, there is a
rapid increase in the electron–phonon matrix element 〈I 2〉 with
decreasing volume (see table 3). A high value of λph in the

8



J. Phys.: Condens. Matter 20 (2008) 045209 S K Bose

Sc-II phase is thus possible despite the reduced value of N(0).
Chances are that at the start of the Sc-II phase both λph and λsf

are somewhat less than the values suggested here.

6. Comparison between hcp Sc and hcp Fe

The bulk moduli of all transition metals are known to increase
(at least initially) as a function of band filling2, and the bulk
moduli of the late transition metals are in general higher than
those of the early ones. The bulk modulus of Fe is thus
expected to be larger than that of Sc, a consequence of Fe
having more d-electrons. The calculations of Bose et al [12]
for the hcp phase of Fe show values in the range of 300 GPa to
970 GPa, corresponding to volumes per atom for which the
calculated Tc is above zero (the theoretical superconducting
phase). These values are 4–5 times higher than the bulk
modulus values of Sc shown in table 1. Accordingly, the
average phonon frequency in hcp Fe is about four times higher
than in Sc. Because of a much larger number of d-electrons in
hcp Fe (6.5 on average) than Sc (1.6 on average), the electron–
phonon matrix element 〈I 2〉 in Fe is also much larger. As a
result, despite the lower value of N(0), the Hopfield parameter
η = N(0)〈I 2〉 in hcp Fe turns out to be more than double that
in Sc (compare table 3 with table II of [12]). However, the
dominating effect turns out to be the lower phonon frequencies
in Sc, leading to higher values of λph.

Spin fluctuations, most probably of an antiferromagnetic
nature [12, 13], are believed to be present in the high pressure
hcp phase of Fe. Because the density of states N(0) in hcp Fe
is about half that in hcp Sc, spin fluctuations in hcp Fe should
be much weaker. There is no specific heat data available for
hcp Fe, the stable phase of Fe at pressures of ∼10 GPa and
higher. As a result, an experimental estimate of λsf in hcp
Fe is not available. Some theoretical estimates were provided
in [12, 13].

For a crude estimate of the ratio between the values of λph

for hcp Fe and Sc, we can assume the Hopfield parameter η to
be simply proportional to the fractional d-DOS, Nd(0)/N(0).
For an estimate of m〈ω2〉, we can use the result proposed
by Moruzzi et al [50], relating the Debye temperature �D to
the bulk modulus, atomic mass and the average Wigner–Seitz
radius:

�D = 41.63

√
s0 B

m
, (15)

where s0 is the average Wigner–Seitz radius in au and B is the
bulk modulus in kbar. This result suggests that m〈ω2〉 ∝ s0 B .
Using B values from table 1 and table I of [12], the DOS values
from table 2, s0 computed from a = 4.6 au, c/a = √

8/3 for
Fe and a = 6.255 au, c/a = 1.592 for Sc, we get λFe/λSc =
0.45. This compares favorably with the value 0.66, according
to the computed linear response values (table III and table II
of [12]). We have used Nd(0) = 34.55 states/(Ryd cell) and
N(0) = 40.79 states/(Ryd cell) (table I of [12]) for Fe. The
proportionality of η to fractional d-DOS, Nd(0)/N(0), can be

2 See, for example, page 148, figure 25 of [20].

somewhat justified on the basis of the RMT result of Gaspari
and Gyorffy [30]:

η = 2N(0)
∑

l

(l + 1)M2
l,l+1

fl

2l + 1

fl+1

2l + 3
, (16)

where N(0) is the Fermi level DOS per atom per spin and fl is
a relative partial state density,

fl = Nl (0)

N(0)
. (17)

Ml,l+1 is the electron–phonon matrix element obtained from
the gradient of the potential and the radial solutions Rl and
Rl+1 of the Schrödinger equation evaluated at the Fermi
energy. Neglecting the matrix elements and all partial DOSs
other than Nd(0) amounts to the result η ∝ Nd(0)/N(0). Of
course, this provides a very crude estimate and can only be
relied on in deciding whether λ for one material is greater or
lower than for the other and no quantitative reliability can be
guaranteed. In fact, in getting the estimate λph,Fe/λph,Sc = 0.45
we have ignored the possible differences in the p- and f-
DOSs of the two solids. Consideration of these differences
would lead to an inferior quantitative agreement. Also, the
ratio m〈ω2〉 for Fe to Sc for the volumes considered is 2.35
according to equation (15), while the value from the linear
response calculation is 3.5.

7. Summary

FP-LMTO linear response calculations for the hcp phase of Sc,
based on a fixed c/a ratio of 1.592, shows a monotonic increase
in electron–phonon coupling with pressure. Calculated phonon
frequencies for the equilibrium lattice parameter are 6–10%
lower than those obtained via INS experiments [24]. The
agreement can perhaps be improved with calculations done
on a finer wavevector mesh. The estimated pressure, based
on the linear response results, for the instability to appear
is 23–30 GPa. This pressure range, which can certainly
be narrowed with additional calculations, agrees with the
experimental observations. The �-point E2g frequency shows
a modest increase with pressure, in qualitative agreement with
the Raman work by Olijnyk et al [26]. Energy-optimized
choice of the c/a ratio for each volume per atom may lead
to a better agreement.

The electron–phonon coupling constant λph is found
to increase steadily with pressure in the hcp phase, until
the pressure reaches a value where the hcp phase becomes
unstable. An estimate of the electron-paramagnon coupling
constant based on the measured temperature coefficient of
the electronic specific heat, calculated band density of states
and λph suggests that the spin fluctuations at normal pressure
should be strong enough to suppress superconductivity
completely. At the highest pressures where the hcp phase
is still stable, the increase in λph and a decrease in λsf in
proportion to the calculated band density of states suggest
the possibility of a very low Tc superconductivity, as noted
by Wittig et al [2]. A comparison of the band densities of
states in the hcp and the Sc-II phases shows that the spin
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fluctuation effects in the Sc-II phase should be reduced by
a factor of two or more. It is argued that this suppression
of spin fluctuation combined with electron–phonon coupling
constants of a magnitude similar to that calculated for the
high pressure hcp phase can indeed account for the observed
superconductivity in the Sc-II phase.
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