
   

Coupled Oscillations

Definition:

• linear chain of n identical bodies (mass m) con-
nected to one another and to fixed endpoints by
identical ideal springs (spring constant k) 

• distances from equilibrium xi, i=1...n

• zero initial velocities; friction ignored
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Prerequisites:

• the simple harmonic oscillator

• Newtonian mechanics in one dimension

Why study it?

• an excellent illustration of the physical signi-
ficance of eigenvalues and eigenvectors

• a prerequisite to studying waves in continuous
media

Summary:

The positions as functions of time are

  x P ( t ) = 
n 

3 
i = 1 

c 
i 
v P 

i 
cos  ω 

i 
t 

,

where for each i=1...n:

• the vector v P 
i  represents the normal mode with

• frequency ωi and

• amplitude ci .

In words: the general motion is the sum of simp-
ler motions (the normal modes), each of which
has a definite frequency.  If the system starts out
in a particular normal mode, it remains there.

Go to derivation

Go to Java™ applet

Note
This link is disabled in the standalone version.  Applets may be accessed from your Web browser.



Here’s an interesting situation. We have two
bodies on our frictionless track, joined up with
ideal springs like this:
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The masses are identical, as are the springs.  We
measure the two distances from the equilibrium
positions as shown.

Let’s think about the answer before we use
mathematics.   In general, the motion will be
rather complicated.  But there are two kinds of
motion which distinguish themselves by being
very simple.  These are very important, so we’ll
think about them first.

In one kind of simple motion, x
1
 and x

2
 remain

equal.  The whole thing oscillates “back and
forth”, and the middle spring is never stretched:
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We can easily tell what the frequency of
oscillation will be, because from the point of
view of either mass, it’s as if the middle spring
were not present.  Each mass is effectively
attached to a single spring with constant k, so the

frequency is 

ω 0 = k 
m 

 .

In the other kind of simple motion,  x
1
 and x

2
remain exactly opposite.  The motion is of the “in
and out” type:
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It is again relatively easy to guess the frequency.
Look at one of the bodies in the above figure.  It
is attached to one spring compressed by amount
x

1
, and to another which is stretched by twice that

amount. The net restoring force on the body is
therefore three times as large as in the previous
case, so it’s as if k were replaced by 3k.  The
frequency will be

ω   = 3 k 
m 

= 3 ω 0  .

These simple motions are called normal modes of
the system.  They have the property that if the
system starts out in one of the normal modes,
then it will remain in that mode.  The resources
for this section contain movies of the lower- and 
higher-frequency normal modes, as well as a



movie of a more complicated motion of the
system.

Now let’s see how the application of Newton’s
law proceeds.  What is the force on body 1?
Well, it has two parts, –kx

1
 due to the leftmost

spring and +k(x
2 

–x
1
) due to the center spring.  To

see this last point, imagine that x
2
>x

1
; in that

case, the center spring is stretched and it pulls
body 1 in the positive direction.  The net force on
body 1 is therefore –2kx

1
+kx

2
.  

We obtain the net force on body 2 by a similar
analysis.  Hence, we arrive at the equations of
motion:

m x ¨ 1 =   − 2 kx1 + kx2 

m x ¨ 2 =   + kx1 − 2 kx2 

This is a pair of coupled differential equations.
In cases like this, the strategy is to try and find
linear combinations of x

1
 and x

2
 which obey

uncoupled equations.  This turns out to be very
easy in our example: adding and subtracting the
two equations gives

m ( x ¨ 1 + x ¨ 2 ) =   − k ( x 1 + x 2 ) 

m ( x ¨ 1 − x ¨ 2 ) =   − 3 k ( x 1 − x 2 ) 

We immediately see that, however complicated
x

1
 and x

2
 may be individually, their sum x

1
+x

2

always oscillates with frequency ω
0
 and their

difference x
1
–x

2
 always oscillates with frequency

√3ω
0
. 

This agrees with what we deduced above.  For
the “back and forth” mode, x

1
+x

2
 is nonzero and

oscillates with frequency ω
0
.  For the “in and

out” mode,  x
1
–x

2
 is nonzero and oscillates at the

higher frequency.

From our earlier section on the harmonic oscill-
ator, the solutions may be written

x 1 + x 2 =   A 1 cos( ω 0 t  –  δ 1 ) 

x 1 − x 2 =   A 2 cos( √ 3 ω 0 t  –  δ 2 ) 

where the A’s and δ’s are determined by initial
conditions.  Solving for x

1
, for example, we find

x 1 =   1 
2 
á A 1 cos( ω 0 t  –  δ 1 ) + A 2 cos( √ 3 ω 0 t  –  δ 2 ) é  .

This shows that x 1  is a superposition of motions
with two different frequencies.  You can easily
convince yourself that x 1 ( t )  is, in general, not
periodic.  This is because the ratio of the two
frequencies is √3, which is not a rational number.
That is, it is not of the form n/m where n and m
are integers. So there’s no way that the motion
can repeat itself after any number of periods.



Of course, the motion is periodic if either of the
A’s is zero - the system is then in one of its
normal modes!

   

Eigenvalues and eigenvectors

Let’s look a little more closely at our pair of
coupled equations.  We are going to use another
language to derive the characteristics of the
solution: the language of matrices, eigenvalues
and eigenvectors.

Let’s write our equations in matrix form:

x ¨ 1 

x ¨ 2 

=   − k 
m 

2 

− 1 

− 1 

2 

x 1 

x 2 

 .

Let’s symbolize the 2×2 matrix in this equation
by M.  What are its eigenvalues?  The
eigenvalues are the solutions λ (read “lambda”)
of the characteristic equation

det á λ ̄  − M é = 0  ,

where “det” means determinant and ¯ stands for
the 2×2 unit matrix:

¯   =   
1 

0 

0 

1 
 .

We have

0   =   det
λ − 2 

1 

1 

λ − 2 
  =   ( λ − 2 ) 2 − 1  ,

which has two solutions, 

λ=3   or   λ=1 .  

The frequencies of the normal modes are the
square roots of these numbers, times ω

0
.  This is

the recipe for finding the frequencies. 

How do we find out what kind of motion the
normal modes represent?  We have to find the
eigenvectors of the matrix M.

Let’s find an eigenvector corresponding to the
eigenvalue 3.  This is a vector which, when
multiplied by M, gives 3 times itself:

2 

− 1 

− 1 

2 

a 

b 
  =   3 

a 

b 
  .

When simplified, both the top and bottom
components of this equation give the relation

a + b = 0 .

Hence, 

a 

b 
  %   

1 

− 1 
  .

(The eigenvector is only determined up to an
overall multiplicative factor.)



The fact that the components of the eigenvector
are opposite tells us that x

1
 and x

2
 are opposite in

this mode, the one with frequency √3ω
0
.

An eigenvector with eigenvalue 1 satisfies

2 

− 1 

− 1 

2 

a 

b 
  =   

a 

b 
 ,

which has as its solution 

a 

b 
  %   

1 

1 
 .

The fact that the components are equal tells us
that x

1
 and x

2
 are equal in this mode, the one with

frequency ω
0
.

   

A case with three bodies

The reason we went through the above analysis
with eigenvalues and eigenvectors is so that we
can deal efficiently with more complicated cases,
for example one in which there are three bodies.
There, we will really begin to get a feeling for the
physical significance of eigenvalues and
eigenvectors.
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It would be an excellent exercise for you to show
that the equations of motion are

x ¨ 1 =   − k 
m á 

2 x 1 − x 2          é 

x ¨ 2 =   − k 
m á 

− x 1 + 2 x 2 − x 3 é 

x ¨ 3 =   − k 
m á 

      − x 2 + 2 x 3 é   .

  

We must therefore find the eigenvalues and
eigenvectors of the matrix

2 

− 1 

0 

− 1 

2 

− 1 

0 

− 1 

2 

  .

The characteristic equation is

det

λ − 2 

1 

0 

1 

λ − 2 

1 

0 

1 

λ − 2 

  =   ( λ − 2 ) á ( λ − 2 ) 2 − 1 é − ( λ − 2 ) 

= ( λ − 2 ) á ( λ − 2 ) 2 − 2 é 

= 0 



which has three solutions: 

λ = 2–√2,  2, and  2+√2  .

The frequencies of the normal modes are the
square roots of these numbers, times ω

0
.

The eigenvectors are easily shown to be

1 

√ 2 

1 

,     

1 

0 

− 1 

,      and    

− 1 

√ 2 

− 1 

  .

The solution with eigenvalue 2 is easy to see; the
middle body just sits there and the first and last
bodies oscillate opposite to one another.  Each
has effectively two springs attached to it, hence
the eigenvalue 2.

The other two solutions are more complicated,
and you probably could not have guessed them
before attempting the mathematics!

The resources for this section contain movies of
the lowest-, middle-, and highest-frequency nor-
mal modes.  And there is a Java™ applet which
lets you set the number of bodies and their initial
positions interactively.

Solution in general case with n bodies:

The matrix is an n×n matrix with 2’s on the
diagonal, −1’s above and below it, and zeros
elsewhere.  It has n eigenvalues λ

i
 and n eigen-

vectors v P 
i .  The frequencies of the normal modes

are 

ω 
i 
= λ 

i 
ω 0  ,

and the solution may be written as

  x P ( t )   =   
n 

3 
i = 1 

c 
i 
v P 

i 
cos  ω 

i 
t 

  ,

where we have taken the initial velocities of the
bodies to be zero, for clarity.

In words, the above equation says that the motion
of the chain, which is not necessarily periodic, is
the sum of simpler motions, each of which has a
definite frequency.  These simpler motions are
called the normal modes, and are represented by
the vectors  v P 

i .  The numbers c
i
 are coefficients

which tell how much of a given normal mode is
contained within the full motion.  For this reason,
they are called weights or amplitudes.  

The eigenvectors have the important property
that they are orthogonal to one another.  This
means that all dot products between eigenvectors
are zero:

v P 
i 
A v P 

j 
  =   0  ,

except when i=j, of course. The dot product of a

Note
Link disabled in standalone version.  Applets may be accessed from Web browser.



vector with itself is the square of the length of the
vector, and it is convenient to adjust the vectors
(normalize them) so that their lengths are 1:

v P 
i 
A v P 

i 
  =   1  .

Using these last two properties of the
eigenvectors, we can calculate the coefficients c

i
in terms of the initial values of the positions.
Substituting t=0 in the equation for the positions,
we get

x P ( 0 )   =   
n 

3 
i = 1 

c 
i 
v P 

i 
  .

Then, we take the dot product of both sides with
a particular eigenvector, let’s say the j’th one:

v P 
j 
A x P ( 0 )   =   

n 

3 
i = 1 

c 
i á v P 

j 
A v P 

i é   .

All terms in the sum are zero except when i=j, so
we find using the normalization of the eigen-
vectors

  v P 
j 
A x P ( 0 )   =   c 

j 
  

.

This equation is valid for all j. 

If the system is started out in one of its normal
modes, let’s say the k’th one, then c

k
≠0 and all

other c’s are zero.  The system remains in this
normal mode at all later times:

x P ( t )   =   c 
k 
v P 

k 
cos  ω 

k 
t   .

Exercise:

Suppose the initial velocities of the bodies are
nonzero.  Show that the positions are given as
functions of time by

  x P ( t )   =   
n 

3 
i = 1 

ä 
ã c 

i 
cos  ω 

i 
t + d 

i 
sin  ω 

i 
t ë í v P 

i 

where 

c 
i 
=   x P ( 0 ) A v P 

i 
     and    d 

i 
=   

v P ( 0 ) A v P 
i 

ω 
i 

.

Here, the initial velocities of the bodies are v P ( 0 ) .


