
   

Motion in a uniform electromagnetic field

Suppose a particle has mass m, electric charge q,
and velocity v P , and moves with speed much less
than the speed of light in a region containing elec-
tric and magnetic fields E P  and B P , respectively.
Then its equation of motion is

 m
d v P 
dt

  =  q á E P   +   v P H B P é   
  .

The right-hand side of the above equation is
called the Lorentz force. The force due to the
electric field is parallel to the electric field, and
that due to the magnetic field is perpendicular to
both the magnetic field and the velocity.

We will solve for the motion in fields which are
the same everywhere (uniform), and do not
change in time (constant). The equation of
motion contains the velocity and its first deriv-
ative, so we will be able to solve for the velocity
in terms of its initial value v P 0 .

Here is a quick link to the result.

We will use an interesting method which uses ma-
trices. It is not the only way to solve the equation
of motion, but it is one of the most elegant.

It begins with the observation that the cross pro-
duct u P H B P , where u P  is any vector, can always be
written as a matrix B multiplying the (column)
vector  u P  from the left:

u P H B P   =   B u P   ,

where
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  .

If you don’t believe this, just write out both sides
of the above equation, remembering to write the
vectors as column vectors.

So the equation of motion can be written

d v P 
d t 

  =   E P   +   B v P   ,

where we have temporarily absorbed a factor q/m
into the fields. Differentiating once to get the
acceleration, we obtain

d a P 
d t 

  =   B a P   .



Because the fields are constant and uniform, this
can be solved immediately using matrix expo-
nentials:

a P   =  exp á B t é a P 0   ,

where a P 0   =   E P   +   B v P 0  is the initial acceleration.

The exponential is defined by its power series:

exp á B t é   =   ̄  +   B t   + 1 
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+ …    .

The matrix B has an interesting property that
allow us to sum up the series in closed form: the
cube of B is just given by

B 3   =   − B 2 B   .

(Note that the scalar B = B P A B P .) This means that
the terms with odd powers of B are
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The terms with even powers of B are
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Hence, everything sums up into the closed form
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If you multiply it out, you will find that the
square of B, acting on any vector u P , gives

B 2 u P   =   á B P A u P é B P   −  B2 u P   =   −  B2 u P z  ,

where

u P z =   u P − u P A B P 

B 2 
B P 

is the component of  u P  perpendicular to B P . So the
terms proportional to  E P   in the acceleration are

E P   −   á 1 − cosB t é E P z + sinB t 
B 

B E P 

= E P 2 + E P z cos B t   +   sinB t 
B 

E P H B P 



Here,

u P 2 = u P − u P z =   u P A B P 

B 2 
B P 

is the component of any vector u P  parallel to B P .
The terms proportional to v P 0  in the acceleration
are

B v P 0 − á 1 − cosB t é B v P 0 + sinB t 
B 

B 2 v P 0 

=   cosB t   v P 0 H B P − v P 0 z B   sinBt   .

 

So the final result for the acceleration is

a P   =   E P 2 + á E P z + v P 0 H B P é cosB t   

  +   sinB t 
B 

E P H B P −   v P 0 z B sinB t 

Integrating once to find the velocity gives

v P   =   v P 0 +   E P 2 t + á E P z + v P 0 H B P é sinBt
B 

  

  +   1 − cosBt

B 2 
E P H B P − á 1 − cosBt é   v P 0 z 

or equivalently

v P   =   v P 0 2 + E P 2 t + á E P z + v P 0 H B P é sinBt
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   +   1 − cosBt

B 2 
E P H B P   +   cosBt   v P 0 z   .

Integrating once again yields the final result for
the path followed by the particle

x P   = x P 0 +   v P 0 2 t + sin Bt
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As a check, let’s see what happens when B
becomes small. Taking the limit yields

x P   6 x P 0 +   v P 0 2 t + t   v P 0 z +   1 
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This is indeed the usual result obtained from solv-
ing the equation of motion for constant force.

An interesting and familiar case occurs when the
electric field is zero and the initial velocity is
perpendicular to the magnetic field. Let’s say that

B P   =  B z ˆ    ,    v P 0 = v 0 y ˆ   .

Then the position is
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x − x 0   =   1 − cos Bt
B 

v 0 

y − y 0   =     sin Bt
B 

v 0   .

This is the equation of a circle passing through
the point á x 0 , y 0 é . To get back to the correct sys-
tem of units, we have to replace

  E P 6 q 
m 

E P   ,   B P 6 q 
m 

B P   .

Restoring these constants, we obtain

x − x 0   =   1 − cos ( qB / m ) t 
qB / m 

v 0 

y − y 0   =     sin ( qB / m ) t 
qB / m 

v 0   .

We find for the angular frequency and radius of
circular motion

  ω   =   qB
m 

     and     R =   
v 0 

ω 
  

  .

The former is called the cyclotron frequency,
which we obtained by more elementary methods
elsewhere. The latter is a geometric property of

uniform circular motion. 

Here is a plot of this path:
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If, in addition, the initial velocity has a com-
ponent parallel to the magnetic field, the path is a
spiral, or helix. 
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The projection of the helix onto a plane perpen-
dicular to the magnetic field is a circular path of
the type just described.  Here is a top view:
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Another interesting case occurs when the initial
velocity is zero and the electric field is perpen-
dicular to the magnetic field. Let’s say that

B P   =  B z ˆ    ,    E P   =   E y ˆ   .

Then the position is

x − x 0   =   Bt− s in Bt

B 2 
E 

y − y 0   =     1 − cos Bt

B 2 
E   .

This is the equation of a cycloid oriented along
the x axis. The average velocity in the x direction
is E/B. Here is a plot:
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The general motion can be quite complicated.
Here is a case of spiral motion in the presence of
both magnetic and electric fields. In this case, the
projection of the path along its axis is elliptical.
(Exercise: calculate the major and minor axes of
the ellipse in terms of the fields and the velocity.)
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Here is a view along the path’s axis:
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There is a Java applet which allows you to set
the fields and the velocity, and then animates the
particle’s path. The view angle can be varied.
The above figures were made using this applet.

Sticky Note
Link disabled in standalone version. Applets may be accessed from Web browser.


