
   

Elastic Collisions

Definition:

• two point masses on which no external forces
act collide without breaking up, sticking together,
or losing any energy.
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Prerequisites:

• collisions in one dimension

• conservation of momentum and energy

Why study it?

• illustratesconservation laws

• illustratescenter of mass frame

• occurs frequently in everyday applications

Summary:

The scattering angles and the target’s final speed
are given by

 cos θ 1 = ( 1 + α ) β 2 + 1 − α 
2 β 

  , 

  
w 2 

v 1 

= 1 − β 2 

α 
    and    cos θ 2 = 1 + α 

2 

w 2 

v 1 

  

where 

α   =   
m 2 

m 1 

   and   β   =   
w 1 

v 1 

  .  

Go to derivation.

Go to Java™ applet
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Momentum and conservation laws

The concept of momentum in three dimensions
is not materially different from that inone dimen-
sion.  The momentum vector of a body is its mass
times its velocity vector:

  p P = m v P   
 .

Suppose we have a many-body system. In such
systems, the concept of momentum becomes
particularly useful.  Let’s see why.

In general, two kinds of forces can act on the
bodies in the system.  There are internal forces
between the bodies, and external forces acting on
individual bodies.

In what follows, we will make a specific
assumption about the nature of the forces acting
between bodies.  We will assume that they satisfy 

Newton’s “third law”:

The force of body j on body i is equal in
magnitude and opposite in direction to the force
of body i on body j.  

(Here, i and j stand for numbers which label the
bodies.) This means that if the subsystem con-
taining only those two bodies were placed in iso-

lation (no external forces acting), then no net
force would act on it.

Although this may seem obvious, it does not hold
for all types of force.  Newton’s third law is not a
law at all; it is just a description of a “nice” kind
of force.

We’ll symbolize the force on body i due to body
j by F P 

ij
 .  Then the third law looks like this in

pictures:
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and like this in symbols:

F P 
ij 

  =   − F P 
ji 

 .

We’ll assume that a body exerts no force on
itself, so F P 

ii
= 0  .  (This is contained in the above

equation.) 

Let’s also let F P 
i 
 be the external force acting on

body i. We make no assumptions about its nat-
ure.  Then Newton’s second law applied to body
i reads



m 
i 
  a P 

i 
=     F P 

i 
  + 3 

j 

F P 
ij   

 .

The right-hand side is the sum of the external
force and all the internal forces acting on body i.  

Now let’s consider the total momentum of the
system; it is the sum of the individual momenta:

p P 
tot

  =   3 
i 

m 
i 
v P 

i 
  .

How does the total momentum change in time?

d 
dt
3 
i 

m 
i 
v P 

i 
  = 3 

i 

m 
i 
  a P 

i 
= 3 

i 

F P 
i 
  + 3 

i , j 

F P 
ij  .

The second term on the right-hand side is zero
because the forces, taken in pairs, cancel out by
Newton’s “third law”.  Hence, we find

  
d p P 

tot

dt
  =   F P 

ext
  

  ,

where the sum of the external forces acting on
the system is

F P 
ext

= 3 
i 

F P 
i 
    .

The internal forces have no effect on the rate of
change of the total momentum.  Now let’s
suppose that the total force acting on the system

is zero.  Then we have a conservation law:

d p P 
tot

dt
  =   0  .

This is not as trivial as it might seem, because it
is true even when the internal forces are nonzero.
The only thing that can change the total momen-
tum is a nonzero total external force on the
system.

   

The center of mass frame

Suppose you have an object made up of several
smaller bodies connected together somehow.
You toss this composite body into the air,
possibly giving it some spin and giving the
consituents some nontrivial internal motions.
The resulting motion can be rather complicated.
As is often done in physics, we would like to find
some aspect of the net motion which is simple.  

You have probably already guessed what this
aspect is, especially after having studied the
center of mass in one dimension.  The whole

thing carries over very easily into three dimen-
sions, the only change being that many quantities
become vectors.

We return to ourequation for the rate of change
of the total momentum of the system.  Written in



terms of the position vectors, it reads

d 2 

dt2 3 
i 

m 
i 
r P 

i 
  =   F P 

ext  .

We can make this look like Newton’s law for a
single body whose total mass is the sum of all the
masses in the system, by multiplying and divi-
ding by the total mass M:

 M
d 2 r P 

cm

dt2   =   F P 
ext

   where    r P 
cm

  =   1 
M 

3 
i 

m 
i 
  r P 

i 
  

.

The quantity r P cm is called the center of mass.  It

is the average of the positions of all the bodies,
weighted by their masses.

The above two equations say that the motion of
the center of mass of the system is the same as
the motion of a single body 

• whose mass is equal to the total mass of the
system;

• which is located at the center of mass of the
system; and

• which is acted on by a force equal to the sum of
the external forces acting on the bodies of the
system.

In general, the center of mass moves as time goes

on.  The velocity of the center of mass is just the
time derivative of r P cm, which is

v P 
cm

  =   1 
M 

3 
i 

m 
i 
  v P 

i 
 

Now, let’s do a trick. We will view the whole
system from a frame of reference which is mov-
ing along with velocity equal to the velocity of
the center of mass.  

Let’s say that a body is moving at 10 m s-1 in the
original reference frame, and that the center of
mass is moving in the same direction at 6 m s-1.
Then the velocity of the body when viewed in the
center of mass frame is 4 m s-1.  To get the
velocity in the center of mass frame, you just
subtract v P 

cm.

We will symbolize quantities in the center of
mass frame by putting primes on them.  Then the
equation which connects velocities in the center
of mass frame with those in the lab frame is

v P 
i 
N =   v P 

i 
  −   v P 

cm
 .

The momentum of a body in the center of mass
frame is just 

p P 
i 
N =   m 

i 
v P 

i 
N   =   m 

i 
( v P 

i 
  −   v P 

cm
)   .

Now for the punch line.  We can show that the
sum of the momenta in the center of mass frame



is zero:

3 
i 

p P 
i 
N   =   3 

i 

m 
i 
( v P 

i 
  −   v P 

cm
) 

=   3 
i 

m 
i 
v P 

i 
  −   M   v P 

cm

=   0   .

The last line follows directly from the definition
of the velocity of the center of mass.

Energy and the center of mass frame

An important property of the center of mass
frame is that

the total kinetic energy of a system is equal to the
kinetic energy of the center of mass plus the sum
of the kinetic energies of the bodies of the sytem,
as calculated in the center of mass frame.

The proof is just a short calculation.  Using the
velocity transformation law

v P 
i 
  =   v P 

cm
  +   v P 

i 
N  ,

and the fact that the sum of the momenta in the
center of mass frame is zero:

3 
i 

m 
i 
v P 

i 
N   =   0  ,

we find

3 
i 

1 
2 

m 
i 
v P 2 

i 
  =   3 

i 

1 
2 

m 
i 
ä 
ã v P 2 

cm
+ 2 v P 

cm
A v P 

i 
N + v P 

i 
N 2 ë 
í 

=   1 
2 
ä 

ã 
å å 3 

i 

m 
i 
ë 

í 
ì ì v P 2 

cm
+ v P 
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A 3 

i 

m 
i 
v P 

i 
N + 3 

i 

1 
2 

m 
i 
v P 

i 
N 2 

=   1 
2 

M   v P 2 

cm
  +   3 

i 

1 
2 

m 
i 
v P 

i 
N 2   .

The first term on the last line is the kinetic
energy of the center of mass. Another way to
write the last equation is

T =  T
cm

  +  TN  ,

where T stands for kinetic energy.



   

Scattering in two dimensions

Let’s apply conservation of momentum and en-
ergy to a non-trivial problem: the elastic scat-
tering of one body off another (elastic means no
energy is lost in the collision).  
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We will suppose body 2 (the target), is initially
at rest.  

Conservation of energy

1 
2 

m 1 v 2 
1   =   1 

2 
m 1 w 2 

1   +   1 
2 

m 2 w 2 
2   .

Conservation of momentum parallel to v1

m 1 v 1   =  m1 w 1 cos θ 1   +  m2 w 2 cos θ 2   .

Conservation of momentum perpendicular to v1

m 1 w 1 sin θ 1   =  m2 w 2 sin θ 2   .

Without loss of generality, we may take w
1
 and

w
2
  to be positive, and the scattering angles to lie

between 0 and π.

You may recall ourearlier treatment of a colli-
sion in one dimension.  There, there were two
equations in two unknowns, the final speeds.
The final speeds were therefore fixed, once the
initial speeds were known.

Here, we have three equations in four unknowns,
the two final speeds and the two scattering
angles.  Therefore, we won’t be able to solve for
them all.  Let’s regard w

1
 as a variable, and solve

for the other three in terms of w
1
.

Let’s solve for θ
1
 (leaving θ

2
 and w

2
 as exer-

cises). We do this in several steps, which we
won’t reproduce here.

1) Eliminate θ
2
 from the two momentum equa-

tions by solving them for cos θ
2
 and sin θ

2
, and

then using the identity cos2 θ
2
 + sin2 θ

2 
= 1.

2) Eliminate w
2
 by solving the energy equation

for w
2
2 and substituting it into the result of the

first step.  

3) Solve the resulting equation for cos θ
1
. The re-

sult is



 cos θ 1 = ( 1 + α ) β 2 + 1 − α 
2 β 

  
  ,

where we have introduced two abbreviations:

α   =   
m 2 

m 1 

  ,

which tells the relative sizes of the two masses,
and

β   =   
w 1 

v 1 

 ,

which just gives w
1 

in units of v
1
. Here is a plot

of θ
1
 for various values of the mass ratio:
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We see several interesting points.  First, if α<1

(target mass less than projectile mass, an un-
common situation) then there is a maximum of
the scattering angle θ

1
.  It is easy to show that it

is given by

 sin θ max
1   =   α   

  .

For scattering through angles less than this, there
are actually two values of the final speed for a
given value of θ

1
. The next figure shows the

momenta in a typical case (α=1/√2, θ
1
=π/6). The

two red lines correspond to one solution, and the
two blue lines correspond to the other.

Here is amovie of the process represented by the
two red lines, andanother of the one represented
by the two blue ones.

On the other hand, if α>1 (target more massive
than projectile) then scattering through any angle
is possible, and there is only one value of the
final speed for a given value of  θ

1
. The follow-

ing graph shows the momenta in several cases:



Here is amovie of the process represented by the
two red lines, and anothermovie of the process
shown in green.  Links to movies showing the
same processes in the center of mass frame will
be providedlater.

Another interesting point is that for all values of
α, there is a minimum value of the final speed of
the projectile. It is given by

w min
1 

v 1 

  =   
m 1 − m 2 

m 1 + m 2 

  
 .

This minimum occurs at θ
1
=0 when α<1 and at

θ
1
=π when α>1.  It corresponds to a maximum

amount of kinetic energy transferred to body 2:

 Tmax
2   =   

4 m 1 m 2 

( m 1 + m 2 ) 
2   T 1    ,

where T
1
 is the energy of the incoming body 1.

In cases where the incoming mass m
1
 is much

less than the target mass m
2
 (as often happens in

fixed-targed particle physics experiments), the
factor multiplying T

1
 on the right-hand side is

much less than 1, and not very much of the
incident particle’s energy can be transferred to
the target.

On the other hand, if the two masses are equal
then the final velocity of the projectile can be
zero.  In that case, the factor multiplying T

1
 on

the right-hand side is equal to 1 and all the ener-
gy is transferred to the target. 

Exercise:

Show that the speed w
2
 and angle θ

2
 of the target

after the collision are given by

  
w 2 

v 1 

= 1 − β 2 

α 
    and    cos θ 2 = 1 + α 

2 

w 2 

v 1 

  
.



Analysis in the center of mass frame

In our section on thecenter of mass frame, we
show that this frame is special because the sum
of the momenta in this frame is zero. This allows
us to simplify the analysis considerably. In the
following, we’ll denote momenta in the center of
mass frame by primes.

There are only two momenta before the collision,
so they are equal and opposite in the center of
mass frame:

p P 2 N =   −   p P 1 N   .

There are only two momenta after the collision
(we’ll call them q P 

1  and q P 
2 ), which are also equal

and opposite to one another in the center of mass
frame:

q P 2 N =   −   q P 1 N   .

We now apply conservation of energy in the
center of mass frame:

p P 1 N 
2 

2 m 1 

+ 
p P 2 N 

2 

2 m 2 

= 
q P 1 N 

2 

2 m 1 

+ 
q P 2 N 

2 

2 m 2 

  .

We thus find that the magnitudes of the momenta
in the center of mass frame do not change during
the collision:

q P 1 N   =   p P 1 N       and    q P 2 N   =   p P 2 N   .

Since the masses of the bodies don’t change
during the collision, we therefore conclude that
the speeds don’t change, when viewed in the
center of mass frame.  Only the direction of
motion changes.  Here are the diagrams:
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In labeling the second diagram, we have already
used the facts that the speed of the target is v 

cm,

that the final speeds are the same as the initial
speeds, and that the final velocities are back-to-
back in the center of mass frame.  Much of our



work is already done.

The final speeds do not depend on the scattering
angle θ N  in the center of mass frame.  The angu-
lar dependence of the final speeds in the lab
frame comes in when we transform between the
two frames. We do this using thevelocity trans-
formation equation

w P 
1 
= w P 

1 
N + v P 

cm .

Writing this out in components and using the fact
that w 

1 
N = v 

1 
N , we get

x-component of final velocity of projectile:

w 
1 
 cos θ 

1 
=   v 

1 
N cos θ N   +   v 

cm

y-component of final velocity of projectile:

w 
1 
 sin θ 

1 
=   v 

1 
N   sin θ N .

We easily calculate from theirdefinitions

v 
cm

=   
m 

1 
v 

1 

m 
1 
+ m 

2 

    and    v 
1 
N =   

m 
2 
v 

1 

m 
1 
+ m 

2 

  .

We solve the two velocity transformation equa-
tions for cos θ N  and sin θ N , and then eliminate θ N 
using the identity  cos2 θ N  + sin2 θ N  =1.  Solving
the resulting equation for cos θ1 yields the same
result asbefore.

Here are the momenta of some typical scatterings
as seen in the lab frame:

In order to compare these processes in the two
frames, here is amovie of the process repre-
sented by the two red lines as seen in the lab
frame, andanother of the same process as seen
in the center of mass frame. And here is amovie
of the process shown in green in the lab frame,
and another in the center of mass frame.


