
   

The driven plane pendulum

Definition:

• pendulum bob of mass m attached to rigid rod
of length L and negligible mass;

• pendulum confined to swing in a plane;

• point of attachment of pendulum oscillates ver-
tically with amplitude h and frequency ω.
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Prerequisite:

• the simple pendulum with no driving force.

Why study it?

• it is one of the simplest dynamical systems exhi-
biting chaos.

Summary:

The equation of motion is

  θ O +   á Ω 2 + H cosτ é sinθ   =   0   
 ,

where

• H =   h 
L 

       • Ω   =   
ω 0 

ω 
      • τ   =   ω t  ,

with the frequency of small oscillations of the un-

forced pendulum being ω 0 = g 
L 

.

Go to derivation.

 

Go to Java™ applet
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Chaotic motion

Let’s modify an ordinary simple pendulum in an
apparently innocent way.  We’ll attach the point
of suspension of the pendulum to a motor, and
make it go up and down with amplitude h and
frequency ω :
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To find the differential equation for θ, we begin
with the rectangular coordinates of the pendulum
bob

x = L   sin θ    and   y = L   cosθ +   h ( t )    , 

where we have pointed the y-axis downwards.
We have also set

h ( t )   =  h cos ω t  ,

where h is constant.

 Differentiating twice, we find for the rectangular
components of the acceleration

x ¨   =  L cos θ   θ ¨   −   L  sin θ   θ ˙ 2 

y ¨   = − L sin θ   θ ¨   −   L  cos θ   θ ˙ 2   +   h ¨     . 

On the other hand, application of Newton’s law
to the bob gives

m x ¨   =   − mg sin θ 
m y ¨   =  mg á 1 − cos θ é 

  .

Eliminating x ¨  and y ¨  yields

L cos θ   θ ¨   −   L  sin θ   θ ˙ 2   =   − g  sin θ 

− L sin θ   θ ¨   −   L  cos θ   θ ˙ 2   +   h ¨   =   g á 1 −  cos θ é   

Multiplying the first equation by cos θ and the
second by sin θ, and then subtracting, gives

L θ ¨ − h ¨   sinθ   =   − g  sin θ   .

Substituting in for h ¨  and rearranging, we get

θ ¨ + ä 
ã 
å å å ω 2 

0 + h ω 2 

L 
cos ω t 

ë 

í 
ì ì ì sinθ   =   0   ,

where the frequency of small oscillations of the
unforced pendulum is

ω 0   =   g 
L 

 .



It is convenient to convert to dimensionless
variables

τ = ω t  ,   H = h 
L 

  ,    and   Ω = 
ω 0 

ω 
  .

In terms of these, the equation of motion
becomes

θ O +   á Ω 2 + H cos  τ é sinθ   =   0    ,

where the primes denote differentiation with
respect to τ.

The point is that something odd happens.  For
some values of the initial conditions and h and ω,
the motion is nice and regular, although not
exactly periodic.  Here is a movie showing a
regular motion.

However, for other values of the initial
conditions, the behavior is quite different.  You
wouldn’t call it regular - chaotic is a more
appropriate name.  Here’s a movie showing a
chaotic motion.

There’s actually a precise way to define chaos,
but we won’t get into that here.  Once chaos is
defined, it is never easy to prove that any given
motion is chaotic. It is also interesting (and
hard!) to try to predict whether a given system
will exhibit chaos.

A very good way to see chaos is to form what is

called a Poincaré section. Every time the pen-
dulum’s attachment point reaches the bottom, its
angular velocity and angle are measured and a
point is plotted in the phase plane (angular
velocity versus angle).

For some values of the initial conditions and
parameters, the resulting figure is very regular-
looking.  But for other values, the points are
splashed around in the phase plane in a manner
that is best described by the word “chaotic” - it is
apparently quite random.  Don’t be fooled,
however - such motion is quite predictable, since
it follows from an ordinary differential equation.

Here are some pictures of Poincaré sections for
the driven pendulum.  It is fun to try to reproduce
them using the Java™ applet.
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The second of these three plots shows some
trajectories which correspond to regular motions
where the pendulum is pointing mostly upwards!
And they all show some islands of regular
motion in a sea of chaos.

This is a fascinating area of study, and belongs to
a wider field called nonlinear dynamics. You
may be interested to follow this link to the Los
Alamos bulletin board, where the latest papers in
this very active field are kept.

http://xyz.lanl.gov/

