
   

The simple plane pendulum

Definition:

• pendulum bob of mass m attached to rigid rod
of length L and negligible mass;

• pendulum confined to swing in a plane.
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Prerequisites:

• fundamentals of Newtonian mechanics;

• energy;

• the harmonic oscillator;

• rotational motion.

Why study it?

• it is one of the simplest dynamical systems exhi-
biting periodic motion;

• a small modification makes it into one of the
simplest systems exhibiting chaos.

Summary:

The equation of motion is

  
d 2 θ 
dt2   +   g 

L 
sinθ   =   0   

Go to derivation.

Go to Java™ applet

Note
Link disabled in standalone version.  Applets may be accessed from Web browser.



   

Introduction

The pendulum is free to swing in one plane only,
so we don’t need to worry about a second angle.
We will neglect the mass of the rod, for sim-
plicity.

1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0

   

 θ 

   

 L 

1 1 1 1 10 0 0 0 0

   

 L – L cos θ    

  mg 

The easiest way to approach this problem is from
the point of view of energy.  That way, we don’t
have to talk about any forces or analyze their
components in various directions.

We know from our section on rotational motion
that the speed of the pendulum bob is

v = L θ ˙   .

The kinetic energy of the bob is then

T   =   1 
2 

mv2 =   1 
2 

mL2 θ ˙ 2  ,

while the potential energy is 

V   =   mg á L  – L  cos θ é  .

We have chosen the potential to be zero when the
pendulum is at the bottom of its swing, θ=0.
This choice is arbitrary. 

Then the total energy is

E   =   1 
2 

mL2 θ ˙ 2 +   mg á L  – L  cos θ é   .

The equation of motion is most easily found by
using the conservation of energy.  Setting

dE
dt

  =   0  

leads to

mL2 θ ˙ θ ¨   +  mgLθ ˙ sin θ   =   0   .

This has two solutions; either θ ˙ = 0  always, or

  θ ¨   +   g 
L 

 sin θ   =   0   
  .

The first solution corresponds to the pendulum
hanging straight down without swinging, or just
balancing straight up.  The second corresponds to
any other kind of motion.

This differential equation can’t be solved exactly,



so we will have to explore its properties in some
other way.

Description of the motion

What do we expect for the motion?  Well, if the
energy E is less than a certain critical value, then
the pendulum will just swing back and forth.
This kind of periodic motion is called libration.
In contrast, if E is greater than the critical value,
the pendulum will swing around and around.
This kind of periodic motion is called rotation. 

If the energy is just equal to the critical value,
there will be two possibilities.  If the pendulum
starts out in motion, it will approach its vertical
position ever more closely, without reaching it in
any finite time.  Or, the pendulum could start out
perched exactly in the vertical position.  It will
remain there indefinitely.

If the energy is zero, the pendulum just hangs
straight down.

The critical value of E is just the value of the
potential energy at the top, θ=±π.  It is

E 
crit

  =   2 mgL  .

These kinds of motion are reflected in a plot of
the potential energy:
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If E is less than the critical value, then the kinetic
energy gets “used up” before the pendulum
reaches its vertical position.  It turns around and
goes back again (libration).  If E is more than the
critical value, there is kinetic energy left over at
the top, so the pendulum keeps going around
(rotation).

Period of the motion

An interesting question is: what is the frequency
of the libration or rotation?  In general, the
answer will be a complicated function of the
energy E, as we have already hinted.  Are there
any special cases that can be treated easily?

A major simplification suggests itself in the
special case where the angle θ never gets too



large.  Then the sine may be approximated by

sin θ  ≈ θ  ,

and we recognize an equation we have met
before, the simple harmonic equation:

θ ¨   +   g 
L 

  θ   ≈   0  .

From this, we read off the angular frequency of
small oscillations:

 ω0   =   g 
L 

  
  .

Note that this is independent of the energy of the
pendulum; you may recall that this is a special
property of simple harmonic motion.  Here is a
movie illustrating this fact.  

As the amplitude of oscillation becomes larger,
however, the above approximation breaks down
and the frequency will depend on the energy.
We know that the frequency must decrease as the
energy is increased, until the energy reaches the
critical energy, at which point the frequency is
zero.

Another way to see the decrease in frequency
with increasing energy is to look back at the
potential for the pendulum, and compare it with
the simple harmonic oscillator (shown in black in

the next figure):
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For a given energy, the pendulum spends more
time out on the “tails” of the potential than the
harmonic oscillator does.  Here is a movie which
shows that as the energy gets larger, the
frequency decreases for the pendulum.

When the energy equals the critical energy, it
turns out that we can actually solve for θ(t). The
law of conservation of energy gives

2 mgL  =   1 
2 

mL2 θ ˙ 2 +   mg á L  – L  cos θ é  ,

which may be re-arranged to yield

θ ˙   =   2 ω 0   cos 
θ 
2 

  .

This is easily integrated using standard tables. If



we suppose that the pendulum starts out at θ=0
and moves in the positive direction, for example,
then the solution is found to be

θ ( t )   =   2   arcsin
ä 

ã 
å å å 
å å 1 − exp á –2ω 0 t é 
1 + exp á –2ω 0 t é 

ë 

í 
ì ì ì 
ì ì   .

As the time becomes large, θ approaches π.  The
pendulum has exactly enough energy to reach the
top, but it never gets there in finite time. Of
course, this latter feature is an artifact of our
idealized treatment of the pendulum. This kind of
motion can never be achieved in practice.

Nevertheless, this motion is important because it
serves to separate two different kinds of motion -
librations and rotations. The rotations occur when
the energy is greater than the critical energy. The
pendulum just spins around and around, and its
frequency increases as its energy does.

   

Phase portrait

An interesting way to view the motion of the
pendulum is to plot the angular velocity versus
the angle, as time goes on. You end up with
several possibilities, depending on the energy.
Some characteristic ones are shown in the
following figure:
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The oval-shaped trajectories in the middle cor-
respond to the librations, while the blue one with
pointed ends corresponds to motions with energy
equal to the critical energy. Such a trajectory is
called a separatrix, because it separates regions
with trajectories having different character. The
trajectories outside this correspond to rotations.
(Note that the system is periodic in θ, so the
points on the left and right edges of the above
plot are the same.)

In order to show the direction of motion along
the trajectories, it is useful to draw arrows
tangent to the trajectories.  This shows the phase
flow.  Here is a phase flow diagram for the
pendulum:
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It is interesting to see the effect of damping on
the above phase portrait:
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The trajectories now spiral in towards the origin
because the pendulum comes to rest as it loses
energy due to the damping.

Here is some MAPLE input code which will

generate the above phase diagrams:

with(DEtools): damping:=0.5:
dfieldplot([diff(x(t),t)=y,
diff(y(t),t)=-sin(x)-damping*y],
[x,y],0..1,x=-Pi..Pi,y=-Pi..Pi,
grid=[15,15]);

   

What's next?

To see how chaos is introduced by a small
modification to the simple pendulum, see the
section on the driven pendulum.


