
   

Projectile Motion

Definition:

• body of mass m launched with speed v0 at angle
θ from the horizontal;

• air resistance F P 
res

  =   − b v P  , b = nonnegative

constant (possibly zero)
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Prerequisites:

• fundamentals of Newtonian mechanics

• motion in one dimension, with and without res-
istance

Why study it?

• a very simple dynamical system with an exact
solution in closed form;

• occurs frequently in everyday applications

Summary:

The body’s position as a function of time is
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Go to derivation.

Go to MAPLE code

Go to Java™ applet

Note
Link disabled in standalone version.  Applets may be accessed from Web browser.



We are now going to analyze a standard problem
in elementary physics: projectile motion. Sup-
pose we launch a projectile with a fixed speed v0

at some angle θ from the earth’s surface.  What
path does it follow, and at what angle must we
launch it, in order for it to travel the maximum
distance along the earth’s surface?

For simplicity, we’ll first solve the problem in
the artificial case in which there is no air
resistance, and then we’ll go on to the more
general case.

Although we have not yet studied the
gravitational interaction, you may be familiar
with the relevant fact:  near earth’s surface, all
bodies (whatever their inertial mass) have an
acceleration of approximately 9.81 m s–2 in the
downward direction.  This is true as long as the
effects of air resistance are negligible.  This value
is given a special symbol, g, and is called the
gravitational acceleration at earth’s surface:

g ≈ 9.81 m  s–2 .

Let's orient our coordinates so that the z-axis
points upwards.  Then the force due to gravity is

  F P = − mgz ˆ    ,

where z ˆ  is the unit vector in the z direction. The
minus sign indicates that the force is directed
downwards.  This force is constant - does not

depend on time, position, or velocity.
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The force of gravity is always in the negative z-
direction - it has no component in the x-direction.
Accordingly, the problem splits into two separate
ones, both of which we have already solved when
we considered one-dimensional motion.

z-direction: motion with constant acceleration

m z ¨   =   −   mg  .

x-direction: motion with constant velocity

m x ¨   =   0   .

(Recall that the double dot notation stands for
second time derivative).

We choose coordinates so that the initial values
of x and z are both zero.  The initial velocities are
the components of the velocity vector shown in
the last figure:



z ˙ ( 0 )   =   v 0  sin θ      and     x ˙ ( 0 )   =   v 0  cos θ   .

The solutions to the equations of motion with
these initial conditions are

x ( t )   =   á v 0  cos θ é t       and

z ( t )   =   á v 0  sin θ é t −   1 
2 

g t 2  .

If we are interested only in the shape of the
trajectory, we eliminate t from these equations:  

z   =   x  tan θ   −   g 
2 v 2 

0 cos2 θ 
x 2   .

This is a parabola opening downwards: a
“parabolic arch”.  (This expression for z is valid
as long as θ≠π/2 - when the projectile is fired
vertically.  In that case, x remains zero.)

How far does the projectile go, before hitting the
ground?  To answer this, we must find the
value(s) of x  for which z=0.  Of course, one
solution is x=0 - the point of launch, but we are
not interested in that one.  The other one is easily
found to be

x ( θ )   =   
v 2 

0  sin 2 θ 
g 

  .

From this, we find that the maximum distance

x 
max

  =   
v 2 

0 

g 
     is reached when      θ   =   π 

4 
  .

Let’s plot the paths for several different values of
θ (all with the same initial speed):
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We see that the trajectory that starts out at θ=π/4
- the red one - goes the farthest.  Trajectories that
start out at smaller θ don’t go as high or as far,
and trajectories that start at larger θ go higher,
but still not as far.

The resources for this section contain a movie
comparing various trajectories.  There is also a
movie illustrating the fact that the velocity in the

horizontal direction is constant, while that in the
vertical direction is not. 

Exercise: firing projectile up a hill

Suppose you are firing a projectile up a hill.  At
what angle θ to the horizontal should you fire it,



so that it goes the maximum distance along the
surface of the hill?
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The answer is

θ   =   π 
4 

+ α 
2 

  .

(Hint: show that

D ( θ )   =   
2 v 2 

0  cos θ  sin á θ – α é 
g  cos2 α 

  .

Note that this expression goes over into our
previous expression for x(θ) when α=0.) 

Example: shooting the monkey

Here’s a classic example that every beginning
physics student has traditionally learned.  A
hunter sees a monkey in a tree, and decides to
shoot it.  He knows that this particular species of

monkey always falls from the tree at the instant
the shot is fired.  At what angle must the hunter
aim, in order to hit the monkey?  
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The first step is to solve for the time at which
impact occurs.  The x-component of the velocity
of the projectile is v

0 
cos θ, and the distance in

the x-direction is D, so the time of impact is

t   =   D 
v 0  cos θ 

 .

At the time of impact, the z-coordinates of the
monkey and bullet must be the same:

H   − 1 
2 

g t 2   =   á v 0   sin θ é t − 1 
2 

g t 2  .

The terms involving the acceleration cancel out



(both bodies accelerate at the same rate -
Galileo’s experiment!), and therefore

t   =   H 
v 0   sin θ 

  .

Equating the two expressions for the time of
impact yields

tan θ   =   H 
D 

 .

This says that the hunter should aim directly at
the monkey!  The downward acceleration of the
monkey exactly compensates for the downward
acceleration of the bullet, as long as they start
falling at the same time.

It may at first seem a bit surprising that this result
doesn’t depend on the speed of the bullet, but it
makes sense when you think about it.  The faster
the bullet, the less time the bullet has to fall, but
the monkey also has less time to fall, so the speed
has no effect.

The resources for this section contain a movie
illustrating the manner in which the monkey
meets his maker.  (Disclaimer: no actual monkey
died to make this movie.)

Inclusion of air resistance

In many physical cases, there is some resistance
to motion.  For example, a body could be sliding

on a surface with friction present.  Or, a body
could be moving near the earth, with air
resistance.

In many cases, the force resisting the motion is
proportional to the velocity of the body.
Mathematically, this is written as

F P 
res

=   − b v P ,

where b is a positive constant.  The minus sign
indicates that the force resists the motion, so is
directed opposite to the velocity. 

We would like to illustrate the procedure of
solving Newton’s law when such a force is
involved.  Just to make it interesting, we will
suppose that the total force on the body is the
sum of a constant force  F P   and the above resistive
force.  This will make our analysis immediately
applicable to the case of projectile motion in a
uniform gravitational field.

It is always a good idea to use physical intuition
to get an idea of the nature of the solution, before
beginning the mathematics. In the present case, it
makes it easy to see one important aspect of the
solution without doing a lot of calculations.

As time goes on, the external constant force will
just balance the resistive force, giving zero net
force.  The body will then move with a constant
velocity called the terminal velocity v

t
.
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The above figure shows the equal and opposite
forces in red.  The net force is

F P 
net

  = F P − b v P 
t 
=   0  ,

which gives for the terminal velocity

v P 
t 
= F P 

b 
 .

Let’s solve the equation of motion and see how
this is reflected in the solution. Newton's law
reads

m 
d v P ( t ) 
dt

= F P − b v P ( t ) ,

which we have written entirely in terms of the
velocity and its first derivative.

The solution is analogous to the one-dimensional
case.  The result is

v P ( t )   = F P 
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where v P 0  is the velocity at t=0. As t becomes
large, the second term vanishes and the velocity
approaches F P / b , as we know it should.  Notice
that the second term never actually becomes zero
at any finite time - it just gets closer and closer.

Integrating once again, we find that the position
vector is given by

  x P ( t )   =   x P 0 + F P 
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,

where x P 0  is the position vector at t=0.

Application: projectile motion with air resistance

Let’s go back and examine projectile motion, this
time including air resistance.  With our
coordinates oriented in the same way as before,
the constant force due to gravity is  F P = − mgz ˆ   , and
we find that the above vector equation gives two
separate equations:

x ( t ) = m 
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Here is some MAPLE code which will generate
the above solutions:

eq1:=(D@@2)(x)(t)=-(b/m)*D(x)(t):
eq2:=(D@@2)(z)(t)=-g-(b/m)*D(z)(t):
dsolve({eq1,x(0)=0,D(x)(0)=v[0]*cos
(theta)},x(t));
dsolve({eq2,z(0)=0,D(z)(0)=v[0]*sin
(theta)},z(t));

If all we are interested in is the shape of the



trajectory, we should eliminate the time and
express z directly in terms of x.  Solving for the
time from the x-equation, which we can do as
long as θ≠π/2, we get

t =   − m 
b 
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Inserting this into the z-equation, we obtain
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At this point, we begin to realize how tedious it is
to keep writing all the constants.  It is more
efficient to express everything in dimensionless
form.  To do this, we have to decide on
appropriate units.

For our unit of length, it is sensible to take the
maximum horizontal distance the projectile can
travel with no air resistance; from before, we
know this is v 2 

0 / g .  Dividing by this unit, we get
dimensionless variables

  ξ = g 
v 0 

2 x     and      η = g 
v 0 

2 z   .

For a dimensionless quantity that indicates the
amount of damping present, it is sensible to take
the ratio of the initial speed to the terminal speed.
From before, we know that the latter is mg/b, so
our dimensionless damping coefficient is

β   /   
v 0 

v 
t 

  =   
bv0 

mg
  .

This quantity is zero when no damping is present.
In terms of these dimensionless variables, the
equation for the shape of the trajectory reads

 η  =   1 
β 2 ln
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,

where c and s are short for cosθ  and sinθ,
respectively.  This form of the equation is much
easier to work with than the original.

It turns out that the maximum horizontal distance
is no longer attained when the launch angle is 45
degrees, but rather something less than that.  In
the next plot, the red trajectory has a 45-degree
launch angle and the blue one, launched at a
smaller angle with the same speed, goes farther:
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Also shown for comparison is the 45-degree
trajectory with no air resistance. We see how the
trajectory with resistance becomes skewed by the
decreasing horizontal velocity.  The trajectory
with no resistance is symmetric (a parabolic
arch). We also see that the horizontal distance
covered is less when resistance is present. This is
what you might expect. 

Let’s find out how much less the distance is. To
find how far the projectile goes at a given angle
θ, we set η=0 and solve for ξ.  One solution is
ξ=0, of course, but we are not interested in that
one.  The other solution is more complicated, and
can’t be expressed in closed form. In general, it
must be obtained numerically.  

However, we can obtain an approximate solution
in the case where the resistance is small. Then,
we can expand in powers of β. (For practice in
expansions like this, see the section on tech-
niques for checking answers.) We will keep
correction terms linear in β.  That means that we
must keep terms up to the cubic term in the
expansion of the logarithm:
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The terms of order 1/β cancel out, and we may
multiply the rest by c/ξ, obtaining

0   =  s −   ξ 
2 c 

  −   β ξ 2 

3 c 2  .

We know from before that the answer when β=0
is

x   =   
2 v 2 

0 sinθ cosθ 
g 

  ,    or   ξ   =   2 sc   .

This agrees with the equation we just obtained.
Let’s write the answer when the damping is
nonzero as

ξ   .   2 sc  ( 1 + α β ) 

and solve for the coefficient α.  We find

α   =   − 4 
3 

s  .

Therefore, we have the result for the horizontal
distance travelled at a given angle θ:
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What is the maximum horizontal distance
possible, and for what angle is this attained? To
find the maximum, we set the derivative to zero:
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The answer when β=0 is θ=π/4.  So we write

θ   .   π 
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and solve for the coefficient ε.  First, we work
out
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Inserting this and dropping all but linear terms:
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Hence,

ε   =   −   1 

3 2 
  .

So the maximum distance is attained when the
launch angle is

  θ   .   π 
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3 2 

  
 .

Note that this is slightly less than π/4, the value
when the air resistance is zero. This may or may
not be surprising, depending on how good your
physical intuition is.

To find out the maximum distance, we insert this

back into the expression for ξ. First, we work out
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and we have a simple result for the maximum
horizontal distance attainable:

  ξ 
max

. 1 − 4β
3 2 

  
 .

Of course, this is less than 1, the value with no
resistance.


