
   

Vectors in two dimensions

Until now, we have been working in one dimen-
sion only.  The main reason for this is to become
familiar with the main physical ideas like New-
ton’s second law, without the additional compl-
ication of vectors.  The time has come, however,
to take this additional step. Many interesting
physical effects are inherently more than one-
dimensional, and we would like to learn about
them.

Studies have repeatedly shown that a poor grasp
of vectors is one of the major causes of failure in
introductory physics courses. The time and effort
spent on developing a good understanding of
vectors now will be amply rewarded later on.

One of the unfortunate facts about this topic is
that students come into first-year physics with
widely different levels of background in vectors.
Another fact is that university-level professors
often don’t want to spend much valuable class
time reviewing vectors.  They prefer to get on to
the “real” physics as soon as possible, and if you
haven’t already magically grasped enough
knowledge about vectors, look out!

This section, and itscompanion on vectors in
three dimensions, attempts to address these

problems. You will find that the emphasis is
placed on understanding the concepts involved,
while the mathematics has been kept to a min-
imum. Knowledge of trigonometry is assumed,
however.  You are really supposed to have
learned this in high school.  If you are weak in
this area, now is the time to review.

   

What is a vector?

Suppose we are in city A, and someone has told
us that a nearby city B is some distance d away.
Do we have enough information to find B?  Of
course not, because B could be at any point on a
circle of radius d centered at A.  Here is a bird's-
eye view:
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In addition to the distance, we need to know the



direction, in order to find B .  One way of
specifying the direction would be to give the
angle θ (the Greek letter theta) of B, measured
counter-clockwise from due east.  Once both the
distance and direction of the line from A to B are
specified, we can locate B.  This is shown in the
following figure:

   

A

   

 d

   

 B

   

 due east

   

 θ 

Taken together, the distance and direction of the
line from A to B  is called the displacement from
A to B, and is represented by the blue arrow in
the above figure.  (The arrow-head tells us that
we are talking about the displacement from A to
B, and not B to A.)  The displacement is a classic
example of a vector.

Definition : a vector is a quantity that has both
magnitude and direction.

The magnitude of the displacement vector from A
to B is the distance from A to B.  It is important
to remember that a vector is not completely
specified by its magnitude or direction alone;
both are necessary.

Another familiar example of a vector is the
velocity.  This vector points in the direction of
motion, and its magnitude is the speed.  If only
the speed is specified, then the direction is
unknown and the velocity is not completely
specified.

Baseball pitchers often talk about having "good
velocity".  Most of the time, what they are really
talking about is just the magnitude of the
velocity; their word for the ability to determine
the direction of a pitch is "control".  Often a
pitcher will have "good velocity" but "no
control".  He won't make it in either baseball or
physics.

Because of the directional nature of a vector, it
looks different when viewed from different
directions.  In the resources for this lesson you
will find a movie illustrating the changing appear-
ance of a vector when viewed from different
angles.

Components of a vector 

Returning to the displacement vector from A to
B, let's ask: "how much of the displacement is in
the easterly direction?"  This is the same as
asking how far B is from A, when viewed from
due south.  The answer is the length of the
segment shaded in green in the following figure:
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This length is referred to as the component of the
displacement vector in the easterly direction.  It
is given in this example by d cos θ.

There's nothing special about the fact that we
found the component of the displacement vector
in the easterly direction.  We can find its
component in any direction we like.  We simply
specify the direction of interest by drawing a
vector in that direction, and drop a line from the
tip of the original vector perpendicular to this
new vector.   For example, the component of the
blue vector in the direction of the red vector in
the following figure is d cos α:
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You might think that there is an ambiguity
caused by the fact that we could equally well

define the angle between the above two vectors
in this way:
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However, cos ( 2 π − α )  is the same as cos α , so
there is no ambiguity.

For the value of α shown in the last two figures,
cos α  is positive.  This is not always the case,
however.  For example, the red vector could
point like this:
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The component in the direction of the red vector
is still d cos α, but this is now negative.  The
absolute value of this number is the length of the
green segment in the above figure.



Specifying a vector in two dimensions

Although a vector is defined as a quantity with
magnitude and direction, it need not be specified
directly by the values of these two properties.
Returning to our discussion of the displacement
vector, we could equally well specify the dis-
placement by saying how far east and how far
north B is from A.  That is, we could specify the
components of the displacement vector in the
easterly and northerly directions.  These are
shown in green in the following figure:
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If the vector is specified in this way, it is said to
be in component form.  This is completely
equivalent with the polar form, in which the
vector is specified by its magnitude and its
direction.

Of course, you can convert freely back and forth
between the two forms.  This is a very common
manipulation.  If you know the polar form (i.e. d

and θ are known), then the components a and b
are given by

a =  d cos  θ     and   b =  d sin  θ .

Conversely, if  a and b are known, then  d and θ
are given by

d =   a 2 +  b2   and  θ   =   arctan  ( b / a ) .

You should not memorize these equations.  They
will occur in many different contexts, with
different variables and in different notations.
However, you should be completely familiar with
the ideas behind these equations, so that actually
performing a conversion between polar and
component form presents no problem.   The
ideas, and not the mathematics, are the primary
content of this lesson.

Addition of vectors in two dimensions

Suppose we have a third city, C, and suppose we
know the distance and direction from B to C (in
addition to our previous knowledge of the
displacement vector from A to B).  Let's say we
want to go directly from A to C.  What are the
distance and direction?  

The first thing to notice is that if the three cities
do not lie in a straight line, then the distance from
A to C  will not be equal to the sum of the



distances from A to B and from B to C.  Also, the
direction will be related in a complicated way to
the two separate directions and distances:

   

A

   

 B

   

 C

You can see, however, that the solution is easy if
we work with the components of the
displacement vectors.  Let the components of the
vector from B to C in the easterly and northerly
directions be be a´ and b´, respectively.  Then it
is obvious that the component of the dis-
placement vector from A to C  in the easterly
direction is a + a´, and in the northerly direction
is b + b´:
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Then the length of the displacement vector from
A to C is 

( a + a ́ ) 2 +   ( b + b ́ ) 2 

and its angle measured counter-clockwise from
due east is

arctan 
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This completely specifies the sum of the two
separate displacement vectors.  To get the sum of
two vectors, you place them tip to tail and draw a
third vector from the tail to the tip of the whole
thing.  In the following figure, the sum of the
displacement vectors from A to B and from B to
C is shown in red.
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Note that the order in which you do the sum is
unimportant.  As the above figure shows, adding
the vectors in the opposite order requires you to
slide them around parallel to themselves.  You
get what looks like a fictitious path from A to C,



going through some ghostly "fourth city".  This is
all right; what matters is the resulting path
directly from A to C.  This is the same, no matter
which order the vectors are combined in.

Here is an important point that often causes
confusion.  A vector is specified completely by
its magnitude and direction.  The vector is the
same, no matter where it is, as long as its
magnitude and direction are the same.  The
location of the vector is not part of its definition.
You are free to "slide the vectors around" as long
as you do not change their magnitude and
direction.  

Vector notation

Instead of referring to a vector by a name like
"the displacement vector from A to B", it is useful
to have a symbol.  We denote a vector by an
arrow over a letter like this: v P .  Different vectors
will be distinguished by different letters.  The
sum of two vectors is written u P + v P , for example.

Multiplication of a vector by a real number

Suppose we add v P  to itself.  We end up with a
vector which is twice as long as the original,
pointing in the same direction:
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It is natural to write v P + v P = 2 v P , where the right-
hand side means a vector in the same direction as
v P  but twice as long.  Obviously, you can multiply
a vector by any positive real number in the same
way; for example, 1.5v P  is a vector in the
direction same direction as v P  but 1.5 times as
long.

Suppose we subtract v P  from itself.  The result is
obvious because when you subtract something
from itself, you get zero:  v P − v P = 0 P .  (The right-
hand side is the zero vector, a vector of length
zero whose direction is undefined.)  This picture
shows the operation of subtracting v P  from itself:
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Subtracting v P  is the same as adding a vector the
same length as v P  but in the opposite direction.
That is,  

v P − v P = v P + ( − v P ) 

Hence, if you multiply a vector by − 1 , you get a
vector the same length as the original but in the



opposite direction.  Similarly, multiplying a
vector by –1.5, say, gives a vector in the opposite
direction and 1.5 times as long.

Multiplying a vector by the real number zero
obviously gives the zero vector.

It’s also useful to have a notation for the length
or magnitude of a vector.  It is

v P  ,

and is a positive number or zero, by definition.

Summary so far

You now know all of the essential information
about vectors: 

• they have magnitude and direction;

• you can find their component in any direction
you choose;

• they can be added together;

• they can be multiplied by a real number;

• there exists a zero vector.

Although we have illustrated the above points
using vectors in two dimensions only, everything
carries over into three dimensions.

There is a section on vectors in three dimensions
in this course material.  You don't need to go
there now, if all you want to do is understand the
concept of vectors, however.

The dot product

The dot product (or scalar product, or inner
product) of two vectors is defined to be the
product of the lengths of the two vectors times
the cosine of the angle between the vectors:

a P A b P   =   a P b P cos θ   .

The dot product is just a number, in contrast to
another kind of product called the vector product
or cross product, to be discussed later.

Note that the length of a vector is just the square
root of the dot product of the vector with itself:

v P = v P A v P   .

Unit vectors

Unit vectors are a handy way to specify
directions.  Until now, we have specified
directions by saying things like “due east” and
“due north”.  It is often useful to have a
shorthand notation for these terms.  What we are
now going to describe is just notation - there is
no more content to it than that.



Let’s make a vector which has length equal to
one unit and points due east.  We’ll call this the
unit vector in the x-direction and symbolize it by
putting a hat over it:

x ˆ   .

Similarly, let’s let the unit vector which points
due north be y ˆ .

(Other common notations for these unit vectors
are i  ̂  and j ̂  or e ˆ x  and e ˆ y .)

Returning to our diagram which shows the
components of a vector in the easterly and
northerly directions, we find that the vector can
be expressed as the sum of multiples of the unit
vectors:
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Remember that a x ˆ  is a vector in the x ˆ -direction
which has length a.  In symbols, 

v P   =  ax ˆ   +  by ˆ  ,

where a and b are related to the magnitude and
direction of v P  as before.

Vectors are particularly easy to manipulate when
written like this.  For example, if we have
another vector

w P   =  cx ˆ   +  dy ˆ  ,

then

v P   − 2 w P   =   ( a − 2 c ) x ˆ   +   ( b − 2 d ) y ˆ   .

Suppose we know the components of two
vectors. Can we easily calculate their dot prod-
uct?  The answer is yes.  The dot product of the
above two vectors turns out to be just the sum of
the products of their components:

v P A w P   =  ac +  bd .

To check this, consider the case where w P  points
in the x ˆ  direction.  (If it doesn’t, then convert
everything to a new set of unit vectors in which it
does.) This means we may set d=0.
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Beginning with the definition of the dot product,
we find

v P A w P   =   v P w P   cos θ 
=   á v P cos θ é c 

=  ac  , 

as claimed.

Polar coordinates and unit vectors

This section is included here mainly for future
reference.  You can safely skip it when you are
reading about vectors for the first time.

The unit vectors we have just discussed are most
appropriate when we are using rectangular
coordinates.  That is, we are specifying the
location of any point in the plane by stating its x-
and y-coordinates:

   

 y
   

x
   

 
   

ˆ
   

 

   

y
   

 
   

ˆ
   

 

   

 x

1
1
1
1

0
0
0
01 1 1 10 0 0 0

However, it is useful in many applications to
specify points by their polar coordinates.  These

are r, the distance from the origin to the point,
and θ, the angle measured clockwise from the x-
axis:
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In this case, the appropriate unit vectors to use
are r ̂  and θ ˆ , as shown in the above figure.  The
former points in the direction of increasing radial
coordinate r , while the latter points in the
direction of increasing angle θ.  

Note that these unit vectors are not fixed.  Their
direction depends on where they are.  That is,
they remain at right angles to one another, but
both point in different directions depending on
the value of θ.  Compare the next figure with the
previous one:
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In contrast, the unit vectors x ˆ  and y ˆ  are fixed,



once and for all.

For this reason, it is often useful to express  r ̂  and
θ ˆ  in terms of  x ˆ  and y ˆ .  It would be an excellent
exercise for you to show that the relations are

r ˆ   =   x ˆ   cos θ   +   y ˆ  sin θ 

θ ˆ   =   − x ˆ   sin θ   +   y ˆ  cos θ  .
  

Sometimes it’s also useful to be able to go the
other way.  The inverse relations are

x ˆ   =   r ˆ   cos θ   −   θ ˆ  sin θ 

y ˆ   =   r ˆ   sin θ   +   θ ˆ  cos θ  .

The velocity and acceleration vectors

Suppose we have a body which moves from
place to place.  Then its displacement vector will
be a function of time:

r P ( t )   =   x ˆ x ( t )   +   y ˆ y ( t )  .

Don’t let the notation confuse you; the things
with the hats are just the usual fixed unit vectors,
and x(t) and y(t) are the components of the
displacement vector.  They are functions of time.

The velocity vector is just the time derivative of
the displacement vector:

v P ( t )   =   d r P ( t ) 
dt

  .

The unit vectors we are using here don’t depend
on time, so the velocity vector in component
form is

v P ( t )   =   x ˆ 
dx( t ) 
dt

  +   y ˆ 
dy( t ) 
dt

  .

Similarly, the acceleration vector is

a P ( t )   ≡   d v P ( t ) 
dt

  =   x ˆ 
d 2 x ( t ) 

dt2 
  +   y ˆ 

d 2 y ( t ) 

dt2 
  .

Velocity and acceleration in polar coordinates

The expressions in the last section are given in
rectangular coordinates.  Sometimes, particularly
when we are dealing with circular motion, it is
useful to have expressions for position, velocity
and acceleration in polar coordinates.  The
displacement vector is

r P ( t )   =   r ̂ r ( t )   .

Of course, this has no component in the θ-
direction.  In order to find the velocity, we have
to differentiate and take into account the fact that
r ̂  changes direction as the position of the particle
changes:



d r P ( t )   
dt

=   d r ̂   
dt

r +   r ̂ d r 
dt

  .

Let’s deal with this aspect first.  Going back to
our expression for r ̂  in terms of the fixed unit
vectors x ˆ  and y ˆ , and differentiating, gives

d r ˆ 
dt

  =   − x ˆ   ω   sin θ   +   y ˆ   ω   cos θ    .

We have used the common short-hand notation
for the angular velocity

ω   =   d θ 
dt

  .

Notice that the right-hand side is just
proportional to  θ ˆ :

d r ˆ 
dt   =   ω   θ ˆ   .

This says that r ̂  just “twists around” in the θ ˆ -
direction.  Inserting into our earlier expression
gives the final result

  v P ( t )   = r N r ̂ +   r ω θ ˆ   
  .

Here, we have used the shorthand notation

N =   d 
dt

  .

(Note: if you can’t see the prime clearly, use
Reader’s magnification tool to increase the
magification.)

The next figure shows a picture of the above
equation.  It gives the decomposition of the
velocity into a radial part (the first term) and an
angular part (the second term).
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We differentiate again to find the acceleration:

d v P ( t ) 
dt

  = r O r ̂   +   r N d r ˆ 
dt

+   ( r N ω + r ω N ) θ ˆ + r ω d θ ˆ 
dt

  .

In the same way as we worked out the time
derivative of r ̂  before, we can show that

d θ ˆ 
dt

  =   − ω r ̂   .  



A little re-arranging then shows that the
acceleration is

  a P ( t )   =   r ˆ á r O − r ω 2 é +   θ ˆ 1 
r 

d 
dt
á r 2 ω é   

  .

For an application of these formulas, see the
section on circular motion.

   

Vector fields

A field is anything which is defined at all points
in some region of space.  For example, the
temperature of the air in a room has a value at
each point in the room.  The values could be
different, or they could be the same.  

In the case of temperature, the value of the field
at any given point is a single number.  Such a
field is called a scalar field.  Mathematically, a
scalar field is specified by a single function of the
coordinates, written F ( r P ) .  Notice that r P  is a
vector (specifying the point in the room, for
example), while the value F ( r P )  of the field at that
point is a single number.

There are other kinds of fields besides scalar
fields.  The next most complicated kind is a
vector field.  As you might expect, that’s a field

whose value at each point is a vector. Such a
thing is specified mathematically by as many
functions as there are spatial dimensions.  In two
dimensions, it’s written

F P ( r P )   =   x ˆ F 
x 
( r P ) + y ˆ F 

y 
( r P )   .

The x-component of the vector field is specified
by a single function F 

x 
( r P ) , while the y-component

is specified by another function F 
y 
( r P ) .

A force field is one type of vector field.  Suppose
the force on a body depends on where the body is
located.  Then the set of the force vectors at all
points in space is a field.  Examples include the
gravitational field and the electric and magnetic
fields, all of which we will study later.

There are other, higher kinds of fields.  For
example, a field whose value at each point is a
matrix (an array of numbers) is called a tensor
field.  These fields are studied in later courses.

Time-dependent fields

Fields often depend on time.  A time-dependent
scalar field is written

F ( r P , t )   .

Here is amovie showing a time-dependent scalar



field.  The value of the field at a point in the
horizontal plane is given by the vertical
coordinate of the surface above that point.

A time-dependent vector field is written

F P ( r P , t )   .

Here is amovie and anothermovie showing
time-dependent vector fields.


