(4) 1. Shown is the voltage-current phasor diagram for a two-element series circuit at angular frequency $300 \mathrm{rad} / \mathrm{s}$. What are the two elements and their values if the phasor magnitudes are 200 V and 20 A ?

(4) 2. The circuit shown has the following attenuation factor:

(a) What type of circuit is this?
(b) What circuit components Z_{1} and Z_{2} could you choose? Is there more than one way to obtain such attenuation factor A ?
(c) Sketch the phase φ of $V_{\text {out }}$, relative to $V_{\text {in }}$, as a function of frequency f.
(4) 3. This is a voltage regulator circuit, providing a constant voltage to the load R_{L}. Here, $R=1 \mathrm{k} \Omega$ and $V=25 \mathrm{~V}$. The maximum rated current through the $15-\mathrm{V}$ Zener diode is 150 mA .
(a) Over what range of R_{L} values is the regulator useful?
(b) For a constant $R_{L}=5.0 \mathrm{k} \Omega$, over what range of input voltages V can regulation be achieved?

(2) 4. For voltage gains of $45 \mathrm{~dB}, 2.3 \mathrm{~dB},-5.4 \mathrm{~dB}$, calculate the multiplicative gain values, i.e. $\left|V_{\text {out }} / V_{\text {in }}\right|$. Repeat, interpreting the values as power gains.
(3) 5. Use $R_{f}=1000 \Omega$ and calculate the values of R_{1}, R_{2}, R_{3} such that

$$
V_{\text {out }}=-\left(V_{1}+V_{2}-V_{3}\right)
$$

