Introduction to the PIC16F877 architecture:

Recall from our exploration of the 74181 circuit that an arithmetic/logic unit has two data inputs 'a'
and 'b' and a data output 'f'. Function select inputs 's' determine the ALU operation that is carried
out,suchas'f=aANDDb', f=a+b' ., f=-a,f=b + 1, f= 0. Note that the ALU may operate on
both, one or none of the input variables a,b. The ALU also included some status bits, or flags:

- a carry bit that is set when there is an arithmetic overflow;
- a zero bit that is set when the result of the ALU operation is zero, that is f = 0.

Recall from our exploration of counters and multipliers that a sequential circuit requires a series of
flip/flops known as an Accumulator to store intermediate results (the result of the current
operation, or machine cycle, for use during the next operation).

Central to the operation of the PIC is the Arithmetic Logic Unit. The data paths to the ALU are
shown in blue. The left input to the ALU is connected to the output of an accumulator register
called W. The right input is connected to an
array of 512 file registers. A memory address
(path shown in red) selects which file register

%Z% 7 [] output will be connected to the ALU input.
y)t ¥ Alternately, a literal (constant) can be selected
[w= [

=00_| =7 _| as the right input to the ALU. The output of the
4 } 4 ALU is connected to both the W and file
LT=? RP=0 F=7 register inputs.

The yellow line represents the function select inputs to the ALU. These bits, known as the opcode,
as well as a literal constant or file register address, are coded as a bit pattern that constitutes a
program instruction that is stored in the instruction register (IR).

Shown below is a partial list of the PIC instruction set, including the 'i ncf ' instruction.

Byte-oriented file register operations COMF f,d Complement f 1 00 1001 dfff f£fff
13 8 7 6 0 DECF f.d Decrement f 1 00 0011 dfff ffff
OPCODE d f (FILE #) DECFSZ f.d Decrement f, Skip if 0 1(2) 00 1011 dfff f::ff
INCF f.d Increment f 1 00 1010 dfff fEff

d =0 for destination W INCFSZ f,d |Incrementf, Skipif 0 1(2) | oo 1111 dfff £fff

d = 1 for destination f IORWF f.d Inclusive OR W with f 1 00 0100 dfff f££ff

f = 7-bit file register address MOVF f.d |Movef 1 00 1000 dfff ffff

The 14-bit opcode for the 'i ncf ' instruction is '00 1010 dfff ffff'.
The PORTD register address is f =8 or 0001000 in binary.

The 'i ncf PORTD, F' instruction is '00 1010 1000 1000 = 0x0A88'
The 'i ncf PORTD, W instruction is '00 1010 0000 1000 = 0x0A08'.

PIC instruction execution

The program counter (PC) points to the next instruction in program memory that will be loaded in
the instruction register. The PIC uses an instruction pipeline that pre-fetches the next instruction
while the current instruction is being executed. Most instructions execute in four clock cycles:

Data operations: Program operations:
1) Decode file register address Increment program counter
2) Read file register data to ALU Instruction fetch
3) operate on file register data Instruction fetch
4) write result to file register or W Instruction fetch + store in IR

A user program, begins at program memory address PC=0x0400. Lets consider the step-by-step
processing of the PIC instruction that increments the PORTD register, 'i ncf PORTD, F'.

¥ | PCLATH=04 | Défgo [IRP=0 | FSR=00 |
. PCL=00 =
iicﬂ 1 ochcoa I_:tm T
T _ _ & .T [y
PC=0400 decods bis LIT=?
¥ T T
FETCH | Memory | IR=0Ag8 |

SN I T I R S 2 S S R T R 2 B

The binary representation of the 'incf PORTD' instruction (0x0A88) has been fetched from program
memory location 0x0400 pointed to by the program counter (PC) and placed in the Instruction
register (IR) on the falling edge of the PIC clock. In this case, the IR contains the 7-bit address of
file register PORTD (8) as well as the code for the ALU operation that will be performed. The IR also
specifies several decode bits that serve to control the internal operation of the PIC.

¥ | PCLATH=04 | [?%C%D [IRP=0 | FSR=00 |
o PCL=00 =Y/
iticﬂ +1 PCH=04 W:ﬂﬂ | 1
T » A
PC=0400 Ag%torggt'c?{'ls |_|T=T?

¥ T T
FETCH | Memory | IR=0A88 |
U I S S S e S 2

During the first clock cycle, the IR output is decoded as the file register address for PORTD (8), the
ALU operation and the PIC hardware control bits. The program counter output is routed to an
incrementing circuit. The file register read/write control is set to read.

¥ | PCLATH=04 | D%:%O [IRP=0 | FSR=00 |
L PCL=01 v =l INcF
Stafﬂ % PCH=04 =00 | 1

|..|

_ _ & .T [y
PC=0401 decods bis LIT=?
¥ T T
FETCH | Memory | IR=0Ag8 |

2 I S I S S I S I S I B

On the falling edge of clock cycle 1, the file register address for PORTD (8) has been decoded and
is ready to use. The program counter is loaded with the output of the incrementing circuit, that is,
the PC has been incremented and is now pointing to the next program memory location.

v | PCLATH=04 | =y [RP=0 | FSR=00 |
o PCL=01 =Y/ IncF
iticﬂ +1 PCH=04 W:ﬂﬂ | 1
» -
T PC=0401 deesdsti LIT=T?

¥ T T
FETCH | Memory | IR=DaBE |
2 I I S S S e e 2

During clock cycle 2, the file register data at address 8 is being accessed. The PC begins to access
the next instruction in program memory.

v | PCLATH=04 | D%:%CI [IRP=0 | FSR=00 |
L PCL=01 =0/ Iner
iticﬂ +] PCH=04 w:nu | 1
T . . [y T [y
PC=0401 deeadetit LIT=?
¥ T T
FETCH | Memory | IR=paBE |

2 I S I S S S R S 2 R S

On the falling edge of clock cycle 2, the file register data (0x01) read at address 0x08 is ready to
use. The program memory read cycle continues.

¥ | PCLATH=04 | D%C:%G [IRP=0 | FSR=00 |
L PCL=01 v =l INcF
Stafﬂ % PCH=04 =00 | 1

|..|

_ _ [.T &
PC=0401 decods bis LIT=?
. t f
FETCH | Memory | IR=0Ag8 |

2 I I S I S S B S I 2

During clock cycle 3, the file register data is operated on by the ALU. The program memory read
cycle continues.

¥ | PCLATH=04 | | IRP=0 | FSR=00 |
. PCL=01
Stack | [+1
—AJ J PCH=04
PC=0401 | JRRTHETR
k 4 T
FETCH | Memory | IR=0A88 |

¢

L R e e

On the falling edge of clock cycle 3, the file register data has been incremented and is ready at the
output of the ALU. The program memory read cycle continues.

¥ | PCLATH=04 | | IRP=0 | FSR=00 |
" PCL=01
Stack | [+1
—,H U ochmoa [w=
Pe=0401 | JRRTHETR

k 4 T
FETCH | Memory |~ IR=0488 |
S T I S R S I e e D S

During clock cycle 4, the incremented data is presented to the file register. The file register
read/write control is set to write. The program memory read cycle continues.

! PCLATH=04 D=0 | IRP=0 | FSR=00 |
2=0

— PCL=01 ¥ ¥

stack | [+1

ey e wew | | ey

I ‘

Y T Y
_ instryctjion
PC=0401 decods bits LIT=7

RF=0

ﬂ
-

¥ T T
FETCH | Memory | IR=0008 |

SN T S I S S S R T B T B

On the falling edge of clock cycle 4, the incremented data (02) is written to file register address 8.
The instruction at memory location 0x0401 is written to the instruction register, terminating the
current and beginning the next instruction cycle.

The 'incf PORTD,W"' instruction selects the accumulator register W as destination. Here, the first
three clock cycles are identical to the previous case. The write cycle changes as follows:

) [pamioos] o e
—— PCL=01 =0 f IncF
| stack | [+1) PCH=04 | w:tm | ¥
0 T Y T &
Pc=0401 | Ja3THCHEn LIT=7

! 1 T
FETCH | Memory |~ IR=0A08 |
2 T I R S I e R B 2

During clock cycle 4, the W register is selected as the destination for the ALU data.

¥ | PCLATH=04 | DE:%O [IRP=0 | FSR=00 |
—— PCL=01 i =
iticﬂ +] PCH=04 w=0z | [7
T _ _ [y T [y
PC=0401 deedst LIT=?
¥ T T
FETCH | Memory | IR=0008 |

S I T A S I S I S e S R T B 2 B

The incremented PORTD data is stored in W. PORTD is not changed.

The following table summarizes the complete instruction set for the PIC16F877 microcontroller.

Mnemonic, L 14-Bit Opcode Status
Description Cycles Notes
Operands MSb LSb Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f, d Add W and f 1 00 0111 dfff ffff| C,DCZ 1.2
ANDWF f, d AND W with f 1 00 0101 Afff f£fff z 1.2
CLRF f Clear f i D0 0001 1fff f£fff z 2
CLRW - Clear W 1 00 0001 O =xExX il
COMF f,d Complement f 1 00 1001 dfff f£fff il 1,2
DECF f.d Decrement f 1 00 0011 dfff f£fff rd 1.2
DECFSZ i, d Decrement f, Skip if 0 1(2) 00 1011 Afff f£fff 1,2,3
INCF f.d Increment f 1 00 1010 dfff f£fff rd 1.2
INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 Afff ffff 1,2,3
IORWF f, d Inclusive OR W with f 1 00 0100 dfff f£fff zZ 1.2
MOVF f, d Move f i D0 1000 Afff ffff z 1,2
MOVWF f Move Wto f 1 oo o000 1fff f££f£ff
NOP - Mo Operation 1 00 0000 Oxx0 0000
RLF f, d Rotate Left f through Carry 1 00 1101 dfff £fff C 1.2
RRF f, d Rotate Right f through Carry 1 00 1100 Afff f£fff C 1,2
SUBWF f, d Subtract W from f 1 00 0010 difff ffff| C,DCZ 1.2
SWAPF f,d Swap nibbles in f 1 00 1110 dfff ffff 1.2
XORWF f, d Exclusive OR W with f 1 00 0110 dEff £fff z 1.2
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f,b Bit Clear f 1 01 00bb bfff ffff 1.2
BSF f,b Bit Set f i 01 0lbb bfff f£fff 1,2
BTFSC f,b Bit Test f, Skip if Clear 1(2) 01 10bb bfff ffff 3
BTFSS f,b Bit Test f, Skip if Set 1{2) 01 11bb bfff f£fff 3
LITERAL AND CONTROL OPERATIONS

ADDLW k Add literal and W 1 11 111x kkkk kkkk| C,DCJZ
ANDLW k AND literal with W 1 11 1001 kkkk kkkk z
CALL k Call subroutine 2 10 0Okkk kkkk kkkk
CLRWDT - Clear Watchdog Timer 1 0o 0000 olio oloo | TO,PD
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk rd
MOVLW k Move literal to W 1 11 00xx kkkk kkkk
RETFIE - Return from interrupt 2 00 0000 0000 1001
RETLW k Return with literal in W 2 11 0lxx kkkk kkkk
RETURN Return from Subroutine 2 00 0000 0000 1000
SLEEP - Go into standby mode 1 0o 0000 ©01llo 0011 | TO,PD
SUBLW k Subtract W from literal 1 11 110x kkkk kkkk| CDCZ
XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk Fid

