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Experiment 1

Op-amps and basics of signal
conditioning

The operational amplifier (op-amp) is the most versatile piece of analog hardware yet
developed. Originally named for its ability perform mathematical operations on analog
voltages, the op-amp has become an essential building block of much of modern electron-
ics. In this experiment, we will analyze the input-output characteristics of an op-amp
as well become acquainted with some of the basic circuits in which it s used.

1.1 Introduction

Ideal op-amps

An op-amp is a differential amplifier with an inverting V_ input and non-inverting V input. The
output voltage Vs is given by the difference of these two input voltages times the open loop gain
Ay

Vouw = Ay x Vip = Ay x (Vi = V) (1.1)

A standard way to derive approximate theoretical equations for the circuits involving op-amps is
to assume that the op-amp is an ideal device having the following electrical characteristics:

1. the inputs draw no current, hence i, =i_ = 0 and the input impedance Z, = Z7_ = oc;
2. the output can supply an infinite amount of current, hence Z, = 0;
3. the open loop gain, or voltage amplification A, = oo.

4. The op-amp adjusts the output voltage so that V_ = V. This follows from Equation 1.1 since
Vout cannot exceed the finite power supply voltage. This equivalence is used to determine the
gain equation for an (ideal) op-amp circuit.

The LM358 op-amp

The LM358 consists of a pair of general purpose operational amplifiers capable of amplifying signals
ranging from 0 Hz (DC) to 1 MHz. The chip can operate using a dual power supply of up to £15V
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down to a single 3 V battery. It can be used in mixed analog/digital circuits that typically operate

from a single 3-5V power supply.
From the LM358 data sheet, determine the

values of A, the input bias current and out-
put source current. Does the LM358 ap-

Output AL ] Vee proximate the characteristics of an ideal op-
In L] 7] Output B amp? Explain.
puts A g a
} Inputs B The slew rate dV,/dt defines the maximum
VEE/Gnd [4] 5] rate of change in V. What is the LM358
slew rate? Does the frequency response of

(Top View) the amplifier depend on the amplitude of the
signal?

Care should be taken to ensure that all integrated circuits (IC’s) are powered
* with both Vo (4) and VEg/Gnd (-) whenever an input signal is supplied!
Failure to do this will destroy 1C’s.

1.2 Open-loop operation

Since A, of the op-amp is very large, a tiny
voltage difference between the inputs causes the

(max) 15vde

output to swing between the positive Vi

and negative Vout(mm) power supply limits, or R1 é

saturate. This effect can be used to implement

a voltage comparator or level detector. Vpps -t
To implement a comparator, one input is set —  Rp %J p

to a reference voltage. The output changes state

as the voltage at the other input swings above R

R2

and below the reference voltage.

Due to input signal noise and non-ideal op-
amp operation, voltage differences between V.
and V_ that are consistently less than a few mil- —
livolts will cause the op-amp output to oscillate
or otherwise behave in an erratic fashion. Figure 1.1: LM358 open loop analysis

Null voltage measurement

@ Assemble the circuit shown in Figure 1.1. Start by making the power connections to the op-
amp, then connect the HP benchtop programmable power supply (PPS) to the workstation
and set it to the 6 V DC range. Turn on the output and adjust the output voltage to around
5V.

Why might you not want to use the already available workstation 5 V power supply?
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@ Complete the connections to the op-amp V; and V_ terminals. R, is a 1 K variable resistor,
(a potentiometer). A small screw allows for the centre tap connection to be set anywhere
between the two resistor ends. The resistors labelled R can be of similar value, in the 10-
100 K€ range.

@ Measure the resulting V,; voltage, then determine values for R; and R, that will allow the V_
voltage to be adjusted above and below V..

Are R; and Ry necessary? What is their function in this circuit? How did you determine
their values? Explain how the op-amp input bias current determines the practical range of
values for the various resistors used in this circuit.

@ Connect and scope to monitor the op-amp output and adjust V- until a transition from one
output voltage limit to the other occurs. Measure and record the positive and the negative
voltage limits of the op-amp output.

Note: type GDS-1102A in a terminal window to export the scope screen to the computer
monitor and optionally save a screenshot of the scope screen for inclusion in your lab report.

@ In the same circuit, connect the benchtop digital multimeter (DMM) to the V- op-amp input.
Adjust the potentiometer carefully to where the op-amp output just begins to decrease from
its positive limit (as observed on the scope), where it is as close to zero output as you can set
it, and where it is not quite at the negative limit. Record these three V_ values. Repeat these
observations several times.

@ Without changing any settings, use the DMM to measure V.

Estimate the open loop gain, A,, of the op-amp and its input offset voltage from the above
measurements. Compare with the nominal value that you obtained from the LM358 data
sheet.

Estimate the op-amp slew rate and compare it with the stated nominal value.

Connect both inputs to the op-amp to ground and measure the output offset voltage. What
should this value be for an ideal op-amp?

1.3 Closed-loop operation

Application of feedback from V, to V_ causes
the op-amp to conform to Rule 4 mentioned in
the introduction. This arrangement, shown in -
Figure 1.2, is known as a wvoltage follower or Vin e—+
unity-gain amplifier. v+

How might this op-amp arrangement be
useful? What is being amplified? Derive Figure 1.2: A voltage follower
the gain equation.



An analog memory cell

It is sometimes necessary to temporarily store a voltage. This is required when converting a voltage
to a digital value, or to implement an analog signal delay. Figure 1.3 shows the schematic of a
typical track-and-hold circuit. When the switch is closed, Vg tracks Vi,. With the switch open,
the capacitor is effectively isolated from V;, and V, reflects the voltage stored in the capacitor.

Which op-amp characteristics are desirable in this type of circuit? What are the bene-
fits/limitations imposed upon the circuit by the resistor and capacitor?

vin 10R 4

Figure 1.3: Sample and hold circuit

Sketch the circuit of Figure 1.3 in your lab book, clearly labelling all the connections to the
LM358 dual op-amp chip.

You can use a jumper in place of the switch if one is not installed on the breadboard.
Set Vi, to a 1 Hz sine wave. Describe the output as the switch is opened and closed.

In track mode, with the switch closed, how are Vi, and V, related? As you increase the Vi,
frequency, what do you observe?

With the circuit in hold mode and the switch open, describe V. Does V,; change in time?
If so, determine the discharge rate of the capacitor. How long before V,,; drops by 1%?

1.4 Analog computation

The op-amp was originally designed to perform mathematical operations from addition to mul-
tiplication, exponentiation and the solution of differential equations. The electrical behaviour of
resistors, capacitors and diodes are used to this end. While not as precise as digital devices, analog
computers are very fast and simple to implement and do not require data conversion to and from

the digital domain.
Figure 1.4 shows a two op-amp circuit that can be used to evaluate the equation

Y=mX+b=mx(X+b/m). (1.2)
The first adds an offset b/m to Vi,. The second op-amp sets the gain, or slope m.

6
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Figure 1.4: Two op-amp solution of Y = mX + b

Derive the transfer function for the two op-amp circuit of Figure 1.4.

The above is not the only way to implement our equation ¥ = mX + b using op-amps. It may
not seem readily apparent, but the circuit of Figure 1.5 also evaluates Y = mX + b, this time using
a single op-amp. Due to the feedback path, the op-amp adjusts the output V,, so that V_ = V.
Because of the very large input impedance of the op-amp, no appreciable current flows into the
op-amp inputs. Thus the presence of an op-amp is not affecting the currents flowing through the
resistors, and we can draw the electrically equivalent circuit as two separate voltage dividers as
shown on the right-hand side of Figure 1.5.

R
Vi e— /N ——
*——o\0
R
Rf

V2 oA §
4
Ea

Figure 1.5: Single op-amp solution of Y = mX + b
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Show that the equation below is valid and that it does represent the equation Y = mX + b:
R r+ R
2R

Vour = x (Vi + V) (1.3)

A practical example

It is often useful to convert a transducer output voltage to a voltage range that quantitatively
represents the actual quantity that the sensor measures.

Suppose that you wish to build an analog thermometer calibrated to display temperature on a
voltmeter in units of 100mV /°C so that 0°C displays 0V, 10°C displays 1V, and so on.

Suppose that the temperature sensor used is an LM61 temperature-to-voltage converter. The
output voltage of this device corresponds to 600 mV at 0°C and varies linearly at a rate of 10 mV /°C.
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@ Determine for the circuit of Figure 1.4 the transfer function parameters required to properly
display the LM61 output as temperature on the voltmeter.

(1) Build the circuit. Set Voc = +15 V and Vg = —15 V. Select R ~ 10kQ).

@ Simulate the LM61 output voltage with the PPS. Vary the PPS voltage and verify that the
circuit behaves as expected.

@ Now replace the PPS with the LM61. The LM61 is a three-pin device. With the flat face
toward you, connect the left pin to +5 V and the right pin to 0 V. The centre pin is the
output voltage, as described.

Connect the LM61 to the op-amp circuit and verify that the circuit converts the LM61 output
voltage as predicted.

What output voltage do you expect at room temperature? When you hold the LM61 with
your fingers, does the output voltage increase?



Experiment 2

Advanced op-amp designs

2.1 Op-amp integrator

The purpose of this section is to wire up and analyze an analog integrator, using a
carefully balanced op-amp and a low-leakage quality capacitor. We will observe the circuit
response to both dc input signals and to the ac waveforms generated by the FG.

Using a capacitor as the feedback element
in the inverting amplifier circuit, wire up
the op-amp integrator.

Use a 1 uF low-leakage capacitor (10% tol-
erance or better), Ry, = 1 M, and set
Vin = 100 mV.

touch
jumper

@ Measure the times required for the output to change by 1V, 3V, 5V, and 8V. Begin the timing
when the touch jumper is removed. Use the jumper to discharge the integrating capacitor,
1.e. to restart the integrator. Repeat 1V measurement at least 3 times, estimate the precision
of your measurements (standard deviation).

The above measurements require that the op-amp be well-balanced. To test, restart the
integrator, and quickly remove Vi, when V, ~ 1V. Does V,; remain constant after that? If
not, re-balance the op-amp.

@ Connect the input to ground, reset the integrator, and observe V,, on the most sensitive
DMM scale. Record your observations.



@ 1000 Modify the circuit as shown, turning it into
a charge—to—voltage converter. The circuit
WuF D jjm“;“er will be used to measure the capacitance of
o another capacitor, C.
Discharge C (1 uF), disconnect the touch
jumper, then carefully move the input
jumper from +5V to the negative input of
the op-amp, and observe changes in V.
Repeat several times.

Compare the measured value of the ratio C';/C, with that obtained by a direct reading of the
capacitance meter.

@ 000 Use FG to provide a square—wave input to
the integrator. Use R;, = 1 M2 and set the

C, D o frequency to about 1 kHz. Choose the C}

. } ( o value appropriate for this frequency. Moni-

tor both the input and the output with the
scope. Make sure you adjust FG to have
a zero DC offset. Alternatively, you may
want to use a small capacitor (~ 1 uF) in
series with FG, to remove the dc compo-
nent from the input.

kG

@ Sketch and explain the observed waveforms.

2.2 Op-amp differentiator

By interchanging the resistor and capacitor of the op-amp integrator, we obtain an op-
amp differentiator. We will analyze its response to various waveforms of the FG.

Do not remove the circuit of the previous section; you may want to re-use it in Sec-

tion 2.3.

@ 060 Wire up an op-amp differentiator as
shown. In a dual-353 package you may
100pf choose either of the two op-amps (pins
} ( 2,3,1 or 6,5,7). The 100 pF capacitor is in-
0.0 luk . cluded to provide noise stability. For this

' dVin

B Vour = —RC
i t dt

Set the FG to 5V peak—to—peak 1 kHz tri-
angular wave and connect it as Vi,.

@ Sketch the input and output waveforms, including the proper scales. Make sure your scope is
on a calibrated setting.
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Calculate and record the slope of the input triangular wave. Also, record the amplitude of
the square wave at the output.

Calculate the expected theoretical value for the differentiator output and compare it to the
experimental value.

@ Change the FG to square wave setting. Sketch the observed waveforms.

2.3 Difference amplifier

The purpose of this section is to introduce precision amplifiers and to learn to distinguish
differential and common mode signals.

Ref: Simpson, Ch. 9-10, esp. Sec. 9.8.7, 10.4; Faissler, Ch. 31 (review); Malmstadt et
al., Ch. 8.1.

@ 100kQ

Vi

Wire up the difference amplifier as shown:
Balance the op-amp by connecting both V;
and V5 to ground and adjusting the offset
potentiometer until V,,; = 0.

Leaving V5 grounded, vary V; (several val-
ues between +1V and —1V) and measure

100k0 Vout-

W

Calculate the average gain of the amplifier. In this measurement, which components determine
the gain of the amplifier? How does the measured value compare with the theoretical one?

@ Connect V5 to a constant +1V source and repeat the above two steps.

@ Connect both V; and V5 to the same variable voltage source; measure V,; for several values
of Vi = V5 between +1V and —1V.

Plot V. vs. Vi and determine the value of the common mode gain from the plot.

Interpret your data in terms of the imbalance of the resistance ratios of the two pairs of
resistors determining the gain, for the inverting and for the non-inverting input. Which pair
has the higher gain and by how much? How could this common mode gain be reduced?

Calculate the common-mode rejection ratio (CMRR) for your difference amplifier. Cal-
culate the maximum common-mode signal the amplifier can accept if a 100 mV signal is to
be amplified with an error of less than 0.1%.
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2.4 Instrumentation amplifier

The purpose of this section is to combine the advantages of a difference input with the
high input resistance of the voltage follower in a complete instrumentation amplifier.

@ Wire up the instrumentation amplifier as shown (add the input voltage followers to the existing

circuit).
2| 100k} ™MQ
1
353
v olil ——i—
10k() 5
- 6
5 +351 > —0 \/out
10k0

1 —13V

5 % 10kS)

N 7

y 5],%% AW W
2 100k() T™MQ

Check the offset of the instrumentation amplifier and adjust the difference amplifier offset

potentiometer if needed. Measure V, for various values of V; and V5 so that you will be able

to determine the difference gain and the common mode rejection ratio of the instrumentation
amplifier. Be sure you have taken sufficient data to perform your calculations.

Describe the reasoning you used in selecting the values for V; and V5. From these data,
determine the gain and the CMRR. Explain your interpretation of the data. Compare your

results with the expected values.

2.5 Logarithmic amplifier

Using a non-linear feedback element with an op-amp (e.g. a pn—junction diode) produces
startlingly different transfer functions. Logarithmic amplifiers serve as the basis for
circuits such as analog multipliers studied in Section 2.6.

Carefully balance a 351 op-amp. Then
wire the logarithmic amplifier (log amp),
using a signal diode as the feedback ele-

ment.

@ Measure V,,; as a function of Vi, and R;,:
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‘/i Rin [in V;Jut
10.0mV | 1IMQ
10.0mV | 100k$2

100.0mV | 100k2

1.0V 100kS2
10.0V | 100k€2
10.0V 10kS2

Plot log I, vs. Viut.

For all but very small forward bias voltages, the current through a diode varies exponentially

with the applied voltage:
J ~ IieeV/nkT

where 7 is an empirical parameter (~ 2 for Si, 1 for Ge diodes), and I; is the intrinsic current
at zero bias.

Apply circuit analysis (Simpson, Sec. 9.7) to your logarithmic amplifier and verify that the
same relationship holds for the measured I, and V.

Fit your data to the above equation and determine the parameters n and I; for your diode.
Can you tell if this is a Si or a Ge diode?

2.6 Analog multiplier
Combining log amps with adding amps allows one to build analog multipliers and other

components of analog computers (for a review, see Faissler, Ch. 30). Here we examine
the transfer functions of one such commercial device, AD53),.

H?SV
oo 9 7oz, AD5F’>4 is mternally. trimmed and‘does not
Xy 01 ADE34 07 require external trimmer potentiometers.
Y, 0—3 Its pinout is shown on the left.
Y,0—4 5 8OV,

—15V

@ For multiplication, use the fixed +10V supply from the job board as the X input and use
several fixed voltages from the reference job board as the Y] input (+10V, =10V, =1V, +1V).
Connect the Z; input to the output. Connect the X5, Y5, and Z5 inputs to common. Test
the multiplier in all four quadrants by applying voltages of both polarities in the range of
+10V. The multiplier transfer function should be Vg = (V, x V;)/10. Include in your data
set (X1, Y)) values of (+10,0), (0,0), and (0,+10).

Offsets modify the multiplier equation:
Vout = Vout(o) + 0.1 x [va — V(O)} X {V;J — V(O)}
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where V(0 Vy(o), and V.9 are the X, Y, and output offsets, respectively. Use your data to
evaluate each of the offsets. Explain how magnitude of offset—induced errors changes with X
and Y input levels.

@ To obtain an output voltage proportional to the square of an input voltage, connect both X,
and Y] inputs to the same voltage source and the X5 and Y5 inputs to common. The Z; input
remains connected to the output. Test the circuit over a 210V range of voltages and compare
to the expected Vu = 0.1 x Vi, 2.

@ The “squared voltage”output can be plotted against the input with the xy—mode of the
oscilloscope. Substitute the output of the FG set in the sine wave mode as the source in the
squaring circuit wired above. Connect the multiplier output to the vertical scope input and
the FG output to the horizontal. Use a 10 Hz sine wave signal. Sketch the resulting display.

@ Now use the dual-trace mode to observe the waveforms of the input and output signals. Sketch
a representative display and indicate the position of OV for each waveform.

Explain the relationship of the frequencies and the DC components of the input and output
waveforms.

Optional: analog division
@ To obtain division, connect the multiplier output to the Y5 input. Now Z; is no longer
connected to the output, and Z5 is no longer grounded. In this configuration:
V(Z) = V(Z)
V(X1) = V(Xy)

%ut — 10 X + V(m)

Measure Vg, for several values of V(Zy) — V(Z;) and V(X;) — V(X3). For simplicity, you
may want to ground Z;, Xo, and Y;. Make sure you keep V(X;) — V(X3) positive (see the
spec sheets of AD534).

The output limits of AD534 are +11V. Calculate and plot the minimum value for V(X;) —
V(X3) as a function of V(Z,) — V(Z;) over the V(Z) range of £10V.
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Experiment 3

Active filters and tuned amplifiers

3.1 Active filter

Weak signals require special attention. The techniques of separating signal from noise

vary depending on the nature of the signal and of noise.

prescriptions.

There are no general easy

When the frequencies of the signal and of the noise differ, one way to increase the signal—
to—noise (S/N) ratio is to restrict the bandwidth of the amplifier in such a way that only
the signal frequencies are transmitted. This principle is illustrated using an active filter

device.

The AF100 universal active filter is a versatile active filter device. It has high—pass (HP), low—
pass (LP), and band-pass (BP) outputs simultaneously available and an uncommitted summing
amplifier for making notch filters. The centre frequency is tunable from 200 Hz to 10 kHz with two
resistors. The quality factor (Q) is variable from 0.01 to 500 by changing two additonal resistors.
The AF100 can be used in either an inverting or a non—inverting configuration.

100k
10kQ R4 1000pF Ry, 1000pF
|| ||
— W i i
9>
0 15 8
100kQ
O O O
Highpass Bandpass Lowpass
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The pinout and the schematic di-
agram of an AF100 are as shown.
Rin, Rq, R, and Rgp must be sup-
plied externally to AF100 (see be-
low). All other components are in-
ternal.

The gain and Q value of the filter
are determined by R;, and Rq. The
centre frequency of the filter is de-
termined by identical resistors, R
and Ry, according to

_50.33 x 10°
=

, in Hz

fo



Wire up the non-—

+15V . .
(fs inverting mode filter
9 5 using external resis-
Rin © BP out tors of Ry = Rp =
7 o\ 0 AW 100k and Ry, =
f1 —
AF100 [ OHp out  Fa = 100K Use
Rq 2 . precision resistors if
possible.
3 5 R,
O LP out
4
&
N —-18V

@ These external resistor values should give a centre frequency of ~ 500Hz and a Q of slightly
greater than unity. Connect the FG output to R;, and use the scope in the two—channel mode
to observe both the FG output and the bandpass output of the filter. Connect the FG TTL
output to the digital counter for a readout of frequency. Set the FG for a 1V peak—to—peak
sine wave. Observe the bandpass output as the FG frequency is varied through the centre
frequency, fo.

What happens to the bandpass output at fy?

@ To measure fy accurately, switch the scope to produce an xy—plot (Lissajous figure) of filter
output ws. filter input. At the centre frequency the bandpass output should be exactly 180°
out of phase with the input signal. Use the Lissajous figure to adjust the FG exactly to the
centre frequency (see Experiment 1, and/or Malmstadt p.43 or Brophy p.63, for a discussion
of Lissajous figures).

@ Now switch the scope back to the dual trace mode and measure the peak—to—peak output
voltage of the bandpass filter as a function of FG frequency over a range of 20 Hz to 20 kHz.
Record 10-15 values in this range including several near fj.

@ Calculate and plot the filter gain in dB ws. log frequency.

From the graph, determine the rolloff rate of the filter in dB/decade, on both sides of fy.!
Comment on the values you obtain.

@ Now connect the scope to the low—pass filter output. Convince yourself that the device
acts as a low—pass filter. Accurately measure and record the 3dB frequency where gain
G = 0.707 x G(lowfrequency), and the phase shift at the 3dB frequency.

@ Repeat for the high—pass filter output.

@ To get a filter with a higher Q, use Ri, = 20k and Rq = 1k2. Set the FG to give a sine
wave with V,_, ~ 0.5V. Observe the bandpass output.

LA useful physica trick: fit G=(a*f+b)*(£<=480) will only fit G(f) for values of f = 480 and below.
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@ Measure and plot the gain in dB wvs. log frequency for the high—(Q) bandpass filter.

Estimate the ) of the two bandpass filters you have investigated. Q can be measured as the
ratio of the centre frequency fy of the bandpass output to the bandwidth (the difference in
frequency between the upper and the lower 3dB points).

@ Return the AF100 to the low—Q state, (Ry, = 100k, Rq = 100k2). Vary the feedback

resistors and measure the centre frequency of the bandpass output.

Ry = Ry fo, predicted fo, measured % error
10k$2
50k
200k

3.2 Notch filter

A special form of active filtering can be thought of as the reverse of bandpass filtering.
In analyzing a notch filter we concentrate on the noise rather than the signal.

@ 00KA AF100 has one additional, uncommitted,
10kQ W summing op—amp. It can be used to con-
struct a notch filter by summing the low
00KD 3 and high—pass outputs, as shown.

B= 51 oy Wire up the above circuit. Make sure
> out you disconnect the grounding wire
from pin 3! Set the AF100 to f, =

500Hz.

—P

N

Measure the frequency response of the notch filter. Choose the frequencies of the FG wisely:
take a sufficient number of measurements to resolve the shape of the filter’s transfer function.

@ Plot the gain wvs. log frequency.
What type of noise could be reduced using the notch filter?

Determine fy from your plot. How does it compare with the expected value?

3.3 Lock—in amplifier

One of the best ways to dicriminate against noise is to use a lock—in amplifier. It
combines the techniques of signal modulation at the source, band—pass limitation, and
phase—lock demodulation to provide ability to distinguish weak signals “buried” in the
noise. Because they actively modulate the source signal, lock—in amplifiers are capable
of distinguishing signal and noise that have overlapping frequency spectra.
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ey o extern Connect a biased photodiode or
noise source a phototransistor to a I-to-V-
converter. Connect an LED to the
TTL output of the FG set at about
500 Hz. Do not connect the exter-
nal noise source (NM on the job
board) yet.
Use the scope to observe the out-
put of the converter and adjust the
position of the photodiode and/or
uoduloted e I—to—V converter the gain of the amplifier until the
square—wave component of 50 to
100mV is obtained at the output.

Make note of the DC level, the square-wave amplitude (p—p), and the approximate noise
amplitude (p—p) in the output signal.

from FG

100kQ

Why is there a DC component in the output of the [-to—V—converter?

e |lfromFG 1 [
| e inml
| I |
i . i : £V |5 | : WF |
from I—to—V 10
Ig?nvertoer | 7 : ; Q : i /\M /W\/—+O
| AF 100 | |aDs3al 1l ™ e |
: < 2 14 00KI |: 1 |: I
| 3 : I [4 : | :
| 7 16 [Le | | |
I Il I
ooka | | |
: 1 K % |
| o e__________1 - |
tuned amplifier multiplier LP filter (demodulator)

@ Now connect the AF100 tuned amplifier circuit to the output of the I-to—V converter. Observe
the tuned amplifier output with the scope. Adjust the FG frequency to get the maximum
output from the tuned amplifier. Record your values of tuned amplifier output voltage (p—p),
waveshape appearance, DC component of the output voltage, and the FG frequency setting.

You should have observed a sine wave at the tuned amplifier output. The input, however,
was a noisy square wave with a DC component. Explain the difference in input and output
waveforms.

@ The analog multiplier and low pass filter (phase-locked demodulator) should now be con-
nected. The tuned amplifier output is multiplied by a square wave that is synchronous with
the LED modulation. Adjust the FG square wave output to supply a £10V reference signal
to the multiplier. Observe the multiplier output. Adjust the FG frequency carefully to obtain
a waveform that most closely approximates a full-wave rectified sine wave. Draw the observed
multiplier output waveform. Label the axes.

@ Connect the active low—pass filter to the multiplier output. Observe the DC output with the
scope. Record the DC level observed with the modulated LED on and off.
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@ Look again at the [-to—V converter output and measure the ratio of the square-wave amplitude
to noise amplitude.

Calculate the signal-to—noise (S/N) ratio improvement obtained with the lock—in amplifier.

@ To better demonstrate the noise rejection capabilities of the lock—in amplifier, still more noise
will be intentionally added to the signal. This noise will be obtained from the noise generator
circuit available on the reference job board.

The relevant part of the reference
200kQ B job board circuit is shown. The

+15V .. .
Vi, 0.001uF 5837 digital noise generator 1C pro-
1 W

duces 10 V pulses that have varying
durations. The pulse durations are

H\N\ﬁ L random integer multiples of 20 us.
5837 w I The 10k potentiometer selects a
0.3uF  150k0 . :

fraction of the noise generator out-

put amplitude. The noise signal
iz is AC—coupled into a summing am-
N plifier that also serves as an active

low—pass filter.

10k0

The additional input to the summing amplifier allows the noise generator signal to be added
to another signal: Vv = Vi, + noise

Vary the 10k() potentiometer to obtain maximal noise amplitude. Sketch the waveform
observed on both sides of the coupling capacitor and at the output of the summing amplifier.
An oscilloscope time base of 20 us/div is recommended.

Also observe the output of the summing amplifier at a sweep speed of 500 us/div. This output
is labelled NM on the job board, for Noise Mixer output.

Calculate the cut—off frequency of the low—pass filter in the NM. What is the attenuation of
this filter for the frequency component that results from transitions every 20 us (25kHz)?

@ Connect the NM output through a 100 k{2 resistor to the summing point of the [-to-V con-
verter (in the noisy signal source). Observe the converter output with a scope and adjust
the noise generator output from zero until the square wave becomes difficult to see. (Trigger
the scope from a clean square-wave or TTL output of the FG to avoid loss of synch.) Mea-
sure the DC output voltage of the lock—in amplifier, with the modulated LED on and then
off. Compare again the signal-to-noise (S/N) ratios at the input and output of the lock—in
amplifier.

Explain why it is necessary to modulate the signal in order to obtain the improvement in S/N
through the lock—in technique.
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Experiment 4

PICLab project board

In this lab you will build your own microcomputer, Brock’s own PICLab microcontroller
project board. Based on a capable high-integration microcontroller (Microchip PIC16F8xx
series I1C), it features all the basic computer parts: CPU, on-board memory, ALU, etc.,
but also programmable input/output ports, hardware timers, analog-to-digital converters,
etc. This makes it an excellent platform to base experimental Physics projects on.

4.1 Introduction

The vast majority of computers in the world do not run Windows, Unix or Linux. They do not
execute word processing or multimedia applications. These are the computers that run appliances
such as your television, VCR, microwave, and cell phone. These intelligent devices are known as
embedded processors, microcontrollers or peripheral interface controllers (PICs). They are used to
perform specific repetitive tasks that require low computational resources such as disk space or high
throughput video processors, and little or no human intervention.

In contrast to the typical number crunching desktop computer, these devices excel in their ability to
communicate with the world around them. To this end, a microcontroller IC not only implements
the basic arithmetic and logical functions of a typical microprocessor, but also includes a variety
of programmable input/output ports, hardware timers, analog-to-digital converters, and a fast and
efficient means of interrupting the execution of the microcontroller program to service a variety of
external or internal events.

A very capable example of a microcontroller is the Microchip PIC16F877. This 40-pin IC includes
an 8-bit reduced instruction set (RISC) processor with 35 instructions, 8k words of re-writable
(flash) program memory, 512 bytes of scratchpad (RAM) memory and system registers, 256 bytes
of electrically-re-writable (EEPROM) data memory. There are 33 programmable input/output
pins, an 8-channel analog to digital converter (ADC), three event counters/timers, and a univer-
sal synchronous/asynchronous receiver/transmitter (USART) capable of communication at up to
1.25Mbits/s. With a 4 MHz clock oscillator, each instruction requires 1 us to execute. The device
will operate at up to 20 MHz and execute five million instructions per second. This microcontroller
can be programmed in circuit with an in-circuit serial programmer (ICSP) or it can reprogram itself
by downloading a new program via the serial (COM) port of a PC or terminal.

Brock’s PICLab microcontroller project board is compatible with the Microchip PIC16F8xx se-
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ries of ICs. This family includes two 40-pin versions, PIC16F874/877, and two 28-pin versions,
PIC16F873/876. These chips are functionally identical but differ in the number of input/output
pins, and the size of the program and data memory.

The PICLab project board includes a variety of peripheral circuits intended to simplify the devel-
opment of a microcontroller based project. Included are the circuits required to drive a 7 segment
LED display, an interface to an LCD display, a keypad, a serial RS232 or USB interface, relays and
current drivers for the control of external devices and an in circuit programming interface. There is
also a small prototyping area for the inclusion of extra components. The PICLab can be powered
from a 9 V DC “wall wart”, a battery, or it can extract power from a computer’s USB port.

A fully assembled PICLab board can operate as a stand-alone device. A five button expandable
keypad can be used to input data and control the operation of the project board. For the display of
output data, a four digit seven-segment LED display can be utilized. Alternately, a more elaborate
LCD alphanumeric display of 2 lines of 16 characters each can be used. This “intelligent” display has
its own character memory and is programmed with a set of commands, much like the microcontroller
chip itself. This device might be used as a programmable thermostat, an alarm clock, or a battery
powered portable instrument such as a digital voltmeter.

A PICLab board also can operate as a remote device. Connected via a serial RS-232 port, or a much
faster USB port, a computer or terminal can accept and display the PICLab’s output data, send the
PICLab commands, and even change the program that the microcontroller is executing. Connected
to a modem (modulator/demodulator), the PICLab could send an alert via the telephone to inform
that the system needs attention. This device might be interfaced to several motion detectors and
used as an intrusion alarm system or other household monitoring device, or as a remote data
acquisition module.

The PICLab project board was designed at the Physics Department specifically as a convenient
platform for several experiments in this course. Later on you will learn the basics of Assembly
language programming, A/D and D/A conversion, and other aspects of computer assisted data
acquisition and control. In this experiment, you will build your own PICLab workstation, by
assembling (soldering) a project board of your own.

4.2 Pre-assembly review of parts and tools

Be sure to examine the schematics diagram of the project board, provided separately. You are not
expected to understand all of the details yet, however, you need to learn to recognize the overall
relationship between what is on the schematics, and its physical implementation on the project
board. The locations of various components on the printed circuit board (see below) are well
marked.

Examine, in particular, the keypad part of the circuit diagram. What should happen when you
press various normally open (N/O) momentary switches? Note how instead of multiple binary logic
lines to the PIC, multiple switches are connected to a single ADC input. Measuring the voltage on
this line, the PIC can determine which of the switches is pressed.

The project board is a high quality double sided printed circuit board. The conductive traces on
the fiberglass substrate are Pre-tinned for ease of soldering and both sides of the board are covered
with a solder mask to minimize the possibility of solder connections between adjacent traces. To
simplify parts placement, the top or component side of the board is silk-screened with the various
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Brock PhRygies

Figure 4.1: A PICLab printed circuit board, version 1.0, the component side

part outlines and corresponding part IDs. All soldering is done on the opposite, or bottom side of
the board.

You will be using version 2.0 of the PICLab board, an updated of version 1.0 that no longer
supports the RS232 interface or 28-pin PICs but includes a prototyping area with several types of
surface-mount pads as well as a TLV431 voltage reference for the A/D converter. Space for two
user-configurable trimmer potentiometers is also included.

Table 4.1 lists the components required to assemble a USB-powered printed-circuit board. These
component are through-hole parts, inserted and then soldered at their proper location. The PIC
itself, and the two 7-segment LED displays are socketed: the components are inserted into the
socket in the final step of the assembly. Several other components, such as a voltage regulator and
power jack, are required if the board needs more than 250mA of current to operate. In this case, a
battery or AC adapter can be used.

Soldering

You will be using a variable temperature soldering station for all your soldering. Turn on the power
and set the temperature so that the green LEDs light up but not the red ones. The soldering station
may take a minute or two to reach the selected temperature. While you are waiting, moisten the
tip-cleaning sponge.

The reliability of your project depends greatly on the quality of your solder connections. Please
review the reference materials on soldering techniques provided on the course web site; they contain
illustrations that may give you a good idea of what is expected. The following guidelines are a brief
summary.

e Each time that you make a solder joint, begin by cleaning the tip of the soldering iron with
the moistened sponge, then “tin” the iron by applying a small amount of solder to the tip.
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Table 4.1: PICLab board v2.0 basic parts list

# \ item \ part 1D \ circuit \ function

1 | 100€2 resistor R9 Reset current limiting resistor

1 | 47TKS) resistor R10 Reset current limiting resistor

1 | IN914 diode, glass D4 Reset blocking diode during programming
1 | N/O mini switch SW1 Reset normally open reset switch

1 | 40 pin IC socket U5 PIC for PIC 16F877 controller

1 | 20.00MHz crystal Y1 PIC microcontroller oscillator crystal

2 | 22 pF capacitor C5,C6 PIC oscillator capacitors

1 | 0.1uF capacitor C7 PIC decoupling capacitor

1 | 10 pin header J3 PIC ICSP Program interface

1 | 40 pin IC socket U1,U2 Display | for RT-DDC563DSA 7-segment displays
8 | 33012 resistor RN1 Display | segment current limiting resistors

4 | 2N4401 transistor Q1-Q4 Display | 7-segment digit driver transistors

4 | 2.2K() resistor R2-R5 Display | transistor base current limiting resistors
5 | N/O mini switch SW2-SW6 | Keypad | normally open keypad switches

1 | 10KS2 resistor R17 Keypad | voltage divider pullup resistor

1 | 4.7K(2 resistor R18 Keypad | SW2 voltage divider resistor

1 | 8.2K(2 resistor R20 Keypad | SW3 voltage divider resistor

1 | 13K resistor R13 Keypad | SW4 voltage divider resistor

1 | 22KS2 resistor R14 Keypad | SW5 voltage divider resistor

1 | 47KQ resistor R16 Keypad | SW6 voltage divider resistor

1 | 500mA solid state fuse | 0.5A PSU yellow disc circuit breaker

1 | red LED LED PSU power on LED, longer lead is 4+ anode
1 | 470% resistor RS PSU power LED current limiting resistor
1 | 6.00MHz crystal Y2 USB USB interface oscillator crystal

1 | 0.033uF capacitor C10 USB decoupling capacitor

2 | 22 pF capacitor C11,C12 USB oscillator capacitors

1 | 0.01uF capacitor C13 USB decoupling capacitor

1 | 0.1uF capacitor Cl14 USB decoupling capacitor

2 | 27€) resistor R11,R12 USB current limiting resistors

1 | 1.5K€Q resistor R15 USB pull-up resistor

1 | 4702 resistor R19 USB resistor

1 | USB B-type connector | USB USB USB cable connector
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Table 4.2: PICLab board v2.0 optional on-board power supply parts list

’ \ # \ item \ part 1D \ circuit \ function ‘
1 | 1.0A solid state fuse | 1A Power | yellow disc circuit breaker
1 | 100uF/10V capacitor | C1 Power | output filter capacitor
1 | 100uF /25V capacitor | C2 Power | input filter capacitor
1 | 1N4004 D1 Power | polarity reversal diode
1 | 3 pin header Power | USB/VDC power select
1| 7805 7805 Power | 5V regulator
1 | Power jack 2.1mm J1 Power | external 9VDC voltage input

This procedure will result in better transfer of heat from the iron to the parts to be soldered.

Apply the tip of the iron where the component lead and the PC board copper trace meet so
that both are heated at the same time. Apply the solder to the side opposite the tip. Do not
touch the solder with the iron tip. When both the lead and the trace are sufficiently hot,
the solder will melt and form a connection. This may take one or two seconds. Apply only
sufficient solder to cover the joint.

Withdraw the tip without disturbing the solder joint and let the joint cool. A good joint will
be smooth and shiny and show a visibly solid connection between the copper trace and the
component lead. When insufficient heat is applied to a joint, the solder will fail to flow around
the connection and will bead and form globules, resulting in a “dry” joint. To correct this,
reheat the joint until the solder melts, apply a touch more solder and let cool.

When soldering a two lead component such as a resistor or diode, insert the component into
the PC board so that it rests flush with the board’s surface, then slightly bend the leads
outward where they meet the board. Solder both leads and when cooled snip off the excess
lead where it meets the solder joint.

When soldering a component with several connections such as an IC socket, insert the com-
ponent flush with the board and hold it in place as you solder the corner pins to the board. If
the socket is not properly seated, apply some pressure to the raised region and heat the solder
joint. After you are satisfied that the part is flush with the board, solder the remaining pins.

4.3 Assembly of a PICLab project board

The parts IDs are laid out on the board as text on paper, with the lowest index at the top left
corner and ID numbers progressing in rows to the lower right corner of the board. To attach the
various components to the printed circuit board, adhere to the following assembly sequence. Check
off each step as it is completed. Note that many components are polarized and require to be placed
on the board in a particular orientation. Follow the philosophy of checking component placement
twice and soldering once. The removal and replacement of improperly installed components can be
a tedious, time consuming process and if improperly carried out, can lead to board damage.

24



Note: before proceeding with the assembly, thoroughly read the following
instructions in their entirety.

Before soldering any components to the project board, familiarize yourself with the proper location
and orientation of all the components. Verify that you are installing the correct parts as specified in
Table 4.1. If you are uncertain as to the value of a particular resistor, measure it with a multimeter.
As you go along, you may find it useful to mark off the steps already completed.

@ Locate the 100 €2 reset circuit resistor R9 and verify the value with an Ohmmeter. Bend the
leads at a right angle where they meet the body of the resistor. You can do this by applying
pressure to the end of the resistor body with the tip of your finger. Be sure to make a tight
angle otherwise the part will not fit into the board. Avoid bending the leads many times as
they will likely break off. With the PC board component side up, install resistor R9 flush
with the PC board, then bend the leads outward to hold the part in place. Turn over the
PC board and solder the resistor leads. Snip the excess lead lengths after the solder joint has
cooled.

@ Repeat the procedure to install the 47 K2 reset circuit resistor R10.

@ Install diode D4. The diode has a glass body with a thin black band at one end to indicate
the negative cathode. The band should be oriented in the same direction as the part outline
on the PC board. Solder and trim the leads.

@ Install the reset switch SW1. The pins have an S shaped bend designed to hold the part in
place during the automated assembly process. You will need to carefully straighten the pins
of all the switches with pliers so that they can be inserted into the PICLab board. Be sure
that the switch is flush with the PC board, then solder it in place.

@ Install the 20 MHz PIC oscillator crystal Y1 and oscillator capacitors C5 and C6.

@ Install the power LED, noting that the negative side of the diode is identified by the notch at
the base, the LED current-limiting resistor R8 and 500mA solid-state fuse, a small flat yellow
disk, at the location marked 'Fuses, 0.5A’.

A three-pin jumper, next to the fuse, can be installed to select the source pf power to the
board, either from the USB connection (USB) or from an on-board power supply (VDC). To
power the board only from the USB interface, connect a piece of wire from the middle hole

to the end hole labeled USB.

@ The location RN1 for the display segment current limiting resistors can accept a resistor
network, an IC that integrates eight resistors in one package, or discrete resistors. You will
use eight discrete 330 2 resistors for this purpose. Install side by side and solder the eight
resistors at location RN1.

@ Install the four 2.2 K2 resistors R2 to R5 that limit the base current of the transistors Q1 to
Q4.

@ The 2N4401 (or 2N3904) transistors Q1 to Q4 must be properly nstalled. Hold the transistor
upright with the part number facing you and the three legs facing downward. From left to
right, the legs are identified as E-B-C. The placement of these legs should conform with the
markings on the PC board. Generally, the three legs are clearly marked on the transistor
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body. Add these transistors to the PC board. If you are not sure as to the proper orientation
of the transistors, ask the instructor.

@ Install the five keypad switches SW2 to SW6.

@ Install keypad resistors R17, R13, R14, R16, R18, R20. Be careful to place these resistors at
their proper location, otherwise the keypad will not function properly. Check their resistance
with an Ohmmeter. The reading should be within a couple of percent of the required value.

@ With the project board component side up, insert a 40-pin IC socket for the PIC controller
at location U5 on the board. One end of an IC socket is usually indexed with a cutout or
some other identifying mark to properly orient the removable IC in the socket. Be sure that
the socket orientation corresponds with the indexed outline on the board.

@ With the board solder side up and the IC socket flush with the surface of the board, solder
the four corner pins to the board. Check that the socket is properly seated. If it is not, gently
apply pressure to the socket and apply some heat to the pin to melt the solder and seat the
socket. Solder the remaining pins, being careful to not apply too much solder and short out
adjacent pins.

@ Repeat the above procedure to mount the 40-pin socket for the seven-segment displays Ul
and U2. Here we are using a socket to allow for the displays to be removable. Orient this IC
socket with the index mark next to pin 1 of Ul.

@ Locate the 10-pin header J3 required for in-circuit serial programming. The location is labeled
“ICSP Program”. Insert the shorter end of the header strip flush with the board and solder
it in place.

@ The FT232BM USB interface chip has been pre-soldered to the board. Typically, for proper
installation, a surface-mount component requires a fine-tipped soldering iron and very thin
solder as well as the aid of a magnifier. Install the other USB-related components: the resistors
R11, R12, R15 and R19, then the capacitors C7 and C10-C14, and finally the 6 MHz crystal
Y2, making sure that the metal case does not contact the pads of C10.

@ Install the silver USB-B connector by gently pressing the jack into the mounting holes while
being careful to make sure that the four small signal wires are properly inserted and protruding
from the other side of the board.

Carefully check over the entire board. You can use the illuminated magnifier to verify that all of the
solder joints are of good quality and that the components are installed at the correct locations and
in the proper orientation. Fig.4.2 shows you what your completed PICLab project board should
look like.

4.4 PICLab basic functionality tests

Before putting your project board to a practical use, you must verify that all of the board’s com-
ponents are functioning as expected. To begin with, always establish that the correct voltage is
present and distributed throughout the board.

@ Have the instructor check your board before you perform the following tests.
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Figure 4.2: A completely assembled PICLab project board

@ Connect a USB cable from the board to the host computer. The LED should light up. If it

does not, the LED may have been inserted backwards. With a voltmeter, verify that there is
5V DC at the Vdd pin of the PIC expansion bus.

@ Test the reset circuit. This circuit sets the voltage at the MCLR pin of the controller. A low

voltage at this pin resets the processor while a level of +5V puts the processor in run mode.
With the Reset switch released, there should be +5V DC present at the MCLR pin of JPS8.
Press the Reset switch SW1. The voltage should drop to OV. Release the switch to return
the reset line to +5V.

@ If the above tests have been successful, remove power from the project board. Ground yourself

by touching the metal case of an instrument, then install the PIC microcontroller chip on the
board. Be sure to properly orient the chip in the IC socket. Without touching the pins,
carefully line up the PIC chip with the socket so that all the pins are lined up with the socket
below. Gently and evenly press the chip into the socket, being sure that none of the pins
are out of alignment and being bent, until it is fully seated in the socket. If the chip resists
installation, see the instructor.

@ Install the two dual 7-segment display ICs. Note the correct orientation. The decimal points

of the display should be at the bottom of the display, toward the PIC. Install the first display
IC flush with the right side of the socket. The second display is installed flush with the first.
The two leftmost pins of the socket will remain empty. That is to say, the displays should
appear offset slightly to the right on the socket.

@ Noting the correct orientation, install the MAX232 serial interface chip into the 16-pin socket

following the directions outlined above.

@ Reconnect power to the project board. If the PIC circuit is functioning properly, the PICLab

will test the 7-segment display by displaying the number 8888. The PICLab will then blank
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the display and wait for user input. Press the Reset button. The PICLab should once again
display 8888, then blank the display. If this happens, the PICLab microcontroller and display
circuits are functioning as expected.

The keypad now needs to be tested. The state of the keypad is encoded as specific voltage levels
at ADC input channel 0. The switches are organized as follows:

Sw2 = ’2?
SW3 = ’3? Swa = 4’ Swb = 5’ SW2 + SW3 = ’1?
Swée = ’6’ none = ’7’

The keypad test routine verifies that the keypad resistors were correctly installed by displaying
the switch number on the LED display when a switch is pressed. The following procedure causes
PICLab to enter a diagnostic mode that displays keypad data.

@ Press and hold one of the keypad switches. Press and release the reset button. The num-
ber 8888 should be displayed, followed by a number that corresponds to the keypad button
currently pressed.

@ Release the switch. The number "7’ should appear. Press each of the keypad switches in
turn and verify that the number corresponding to the switch is displayed. If the number
output does not match the switch pressed, an incorrectly valued resistor has been installed.
Simultaneously press SW2 and SW3; the digit "1’ should be displayed. Press the reset button
to exit the diagnostic routine.

Now you can test the operation of the PICLab USB serial interface. The PICLab board is controlled
and programmed via a connection to the picl software running on a host computer. picl can
automatically detect the presence of the PICLab board. More on this later...

@ With the PICLab board connected to the host computer, login to your workstation and type
‘picl’” at the command prompt. The picl software should start by opening a "PICL’ window on
your desktop, as well as a "PIC simulator’ window. At the top left corner of the "PICL’ window,
an icon displaying a single plug shows that the PICLab board is not currently communicating
with the picl software and picl software is running as a PICLab simulator. In this mode,
your programs are executed on a virtual duplicate of the PICLab hardware.

(1) Check that the port is set to ’/dev/ttyUSB0’. Click on the connection icon; it should change
to a connected pair of plugs and a message 'Connected to PICLab at 57600 Baud’ should be
displayed in the status box. The 'PIC simulator’ window disappears.

@ From the 'Options’ menu, click the 'Reset PIC’ button. The PICLab board should momen-
tarily display the ’8888" and then blank, just as if you had pressed the Reset button on the
board.

Once all of the above tests have been successfully carried out and all problems have been resolved,
your PICLab is ready for use.
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Experiment 5

PICLab programming

Brock’s own PICLab s the development board package that will be used in several exper-
iments in this lab. The microcontroller used in PICLab is the Microchip PIC16F877-20
or PIC16F887. With a 20-MHz oscillator, most instructions require 200 ns (4 clock
cycles) to execute. In addition to the PIC itself, the PICLab board contains power sup-
ply, display, and interface circuits necessary to communicate with the board via a USB
port of a Linuz workstation or PC. The goal of this lab is to learn how to add operating
softwaer to this hardware platrform.

PICLab bootloader

A small bootstrap utility program has been pre-loaded into the memory of your PICLab, and a
computer program called picl has been written to provide transparent communications with the

PICLab board.

picl IDE

picl is an Integrated Development Environment of the PICLab board. It allows you to write
assembler programs, compile and download them to the memory of the PIC, and to examine the
state of the PIC memory or registers during the debugging process. picl can also provide a real-time
text and graphical display of data sent by your running program.

picl also includes a PICLab simulator. Implemented in software is most of the functionality of
PICLab, including the internal hardware of the microcontroller and the external hardware elements
such as the LED display, keypad, LCD display and serial port. The user subroutines that are
preloaded on PICLab are also simulated in software. Hence, your code developed with the simulator
should run as expected on the real PICLab.

With the simulator you can easily single step through your code and monitor the outcome of each
instruction. Further, Virtual Pic allows you to view how an instruction is executed inside the PIC
and the path that your data follows on every cycle of the PIC clock.

You can easily switch execution of your code between the simulator and the PICLab board by
making or breaking the PICLab connection.
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PICLab schematic
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Figure 5.1: Block diagram of a PICLab board

Fig. 5.1 provides an overall block diagram of the PICLab board, showing the essential connections
between the PIC itself and the other components of the PICLab board. Together with the picl
help menus and the PIC reference documentation (see the References section of the class website)
this information should be sufficient for you to get your PICs to work.
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Connecting PICLab

By default, picl enters the PIC Simulator mode on start-up with the 'Connect’ icon showing a
single plug meaning that PICLab is not currently connected to PICL. With your PICLab board
connected to the USB port of your Linux workstation and the port set to /dev/piclab, click the
connection icon. The icon changes to two connected plugs, a message 'Connected to PICLab at
57600 baud” appears in the status box, and picl is ready to communicate with PICLab. Check
the ’Auto connect’ box in the ’Settings’ menu to detect and connect to PICLab on start-up. *

PICLab interface
On your Linux workstation, invoke the graphical user interface to PICLab by typing:

picl &

~_ PICLoader (v.7.05.14): untitled.asm =

File Edit View Options 2 W Autorun  Build | Run |
Host: | Port: |sdevipiciab
[begin  bst PORTD 7 A
movluw 100
call Wait
bof EORTD K
ol 200
call Wait
goto begin
I

Figure 5.2: picl application window, connected to PICLab

Fig. 5.2 shows what picl window should look like on your screen. Typically, you enter one or more
opcodes in the entry window and click . If the assembly completes without errors, PICLab
loads the given instruction(s) to the Flash program memory and executes them.? This code will not
erase if the PIC is reset or the power is turned off. You can execute the program currently stored
in the PIC memory by clicking the button.

As the program runs, PICLab sends a variety of data back to the user. You can open several
windows in the menu to keep track of how the values in the PIC registers and memory
change as a result of your instructions being executed.

Click the button for help on the PIC opcodes, assembler directive commands and a list of the
utility subroutines pre-written for you to use in your programs. Click "Exit’ in the 'File’ menui
when done, your working environment will be saved.

1To program PICLab from your laptop or PC, you need picl and the Tcl/Tk 8.4 interpreter installed; it is freely
available for all platforms at www.activestate.com. You may also need to specify the connection: e.g. /dev/piclab
or /dev/ttyUSBn under Linux or COMn under Windows, where n is the desired port. Under Windows, a USB serial
device is identified as a COM port.

2By default, the loader chooses 0x0400 as the starting address of the user program, out of the total program
address space of PIC of 0x0000-0x1FFF; the loader itself is using 0x0000-0x03FF.
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5.1 Assembler instructions and code development

You are now ready to begin programming. As you progress through the exercises, be sure to
understand the function of each instruction (see the help menu) and the overall logic of the program
code. Familiarity with the PIC instruction set and with these basic technoques of interacting with
PICLab will make programming the PICLab board a more pleasurable experience.

@ Start the picl application. Connect to PICLab. In the following steps, the comments shown
in brackets do not need to be entered; the text can be formatted using the tab key.

Begin by sending to the PIC an instruction to turn on bit 7 of its Port D. This pin is connected
to the decimal point of the seven-segment displays. In the entry window, input the following
opcode:

bsf PORTD,7 ; set bit 7 of file register PORTD

Click the button. The LED attached to bit 7 of Port D on the PIC should turn on.
Modify the above instruction to read as follows:

bctf PORTD, 7 ; clear bit 7 of file register PORTD

Clicking should turn off the LED.

@ You will now implement a loop. Enter the following code:

begin bsf PORTD, 7 ; set bit 7 of file register PORTD
bctf PORTD,7 ; clear bit 7 of file register PORTD
goto begin ; branch to label called "begin"

Since the program is toggling the Port D bit on and off a couple of times every microsecond,
the LED should appear continuously lit, but somewhat dimmer. The PICLab board is now
executing an infinite loop and will not respond to commands.

Connect an oscilloscope to pin 7 of PORTD on the expansion connector. Sketch and label the
output waveform.

Explain the timing in terms of the PIC instruction execution times. Is the timing in agreement
with your expectations?

@ Press the button on the PICLab board to interrupt the program and regain control
of the hardware.

You can slow down the LED flashing rate by introducing a long, in PIC terms, delay after
each of the bit operations. A utility subroutine called Wait is available to implement such a
delay. The W register is loaded with a delay value to be passed to the subroutine. Try the
following code:
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begin bsf PORTD,7 ; set bit 7 of file register PORTD

movlw 250 ; pass delay count to Wait subroutine
call Wait ; execute a delay of 250*150us

bctf PORTD, 7 ; clear bit 7 of file register PORTD
movlw 250 ; delay value for Wait subroutine
call Wait ; execute a delay of 250%150us

goto begin ; branch to label called "begin"

The flashing of the LED is now clearly noticeable. Vary the value in the movlw instructions
to observe how the flashing rate varies.

5.2 Loops, conditional branching, and calls to subroutines

The next step in our exploration of PIC programming is to add some flow control to the program’s
execution. One possibility is to have the algorithm flash the LED a set number of times, then
terminate and return control to the user. You can use labels to make the program more readable.
The equ directive assigns a value to a label. The following code will flash the LED COUNT times
and terminate.

; Flash.asm: Program to flash LED on and off a specified number of times

COUNT_REG equ 0x20 ; use register 0x20 to count, 0..1F are reserved
COUNT equ 0x10 ; count value to be put into the count register
DELAY equ Oxff ; "Wait" this many tics, “150us ea

movlw COUNT ; put a count value into the accumulator

movwf COUNT_REG ; put accumulator into the count register
flash bsf PORTD,7 ; turn on LED segment

movlw DELAY ; pass DELAY count to function Wait

call Wait

bctf PORTD, 7 ; turn off LED segment

movlw DELAY ; pass DELAY count to function Wait

call Wait

decfsz COUNT_REG ; decrement count, skip over the next...

goto flash ; ...instruction when file register=0

Another way to terminate a loop is to check for a certain condition and run until it is satisfied, such
as when the user presses a button. The Getkey subroutine reads the keypad and returns in W a
value of 2-6 if a button is pressed, otherwise a value of 7 is returned. The STATUS register maintains
the state of several flags that can be tested to alter the program flow. The zero flag Z is set when
the result of an operation is zero, and is cleared otherwise.

@ Document the following code and test the algorithm by running the program. What does the
program do? Does the program behave as expected? Consult the help menu (?) to obtain
more information on the PIC opcodes and utility subroutines that are available for you to
use.
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; Showkey.asm: Program to .......... . .. e

KEYSAVE equ 0x20 S e e e
clrf PORTD S e e et e e e e e
readkey call Getkey I
movwf KEYSAVE D e e e e e e
sublw 7 S
btfsc STATUS,Z D e e e e e e e e e
goto readkey S e e e e e
movf KEYSAVE,W D e e e ettt et e e e e e
movwf PORTD S e e e et
sublw 2 S e e ettt e e e e e e e
btfss STATUS, Z S e e et et e e e
goto readkey e
return ; required if code follows main program .

In the above example, a simple return from a subroutine (instruction return) is being used. In the
picl convention, the entire user code is assumed to be a subroutine of the PICLab loader, and so at
the very end of the code, an automatic return is always inserted for you. This is why your one-line
“programs” like bsf PORTD 7 worked just fine even though they did not have a return operation.
However, you must insert an explicit return at the end of every subroutine that you yourself write,
and at the end of your main program if any code follows it.

An extra return somewhere in the middle of the code can also be used as a simple debugging tool.
Upon encountering such a “premature” return, the program will terminate, pass the control to the
PICLab loader, and it in turn will update all of the open windows of picl with the current values
of various registers, memory contents, etc. You will then be able to examine the current status of
your PIC and decide if the code you wrote is doing exactly what you intended it to do.

You may also execute a call Break instruction to update picl with the recent values from the
PIC, and to continue program execution. This subroutine is not a part of the PIC instruction set,
but is made available through the utility loader function set. You can use the ! symbol in a blank
line as a short form for call Break.

Note: The call Break and ! instructions may cause unexpected program behaviour when placed
in your code following a conditional branch instruction or as part of a jump table.

In addition to the simple returns, the PIC instruction set has other flow control instructions that
allow one to take some programming shortcuts. For example, addwf PCL F instruction increments
the current program counter (PC) by a value stored in the W register before proceeding to the
instruction stored at that location. In this way, an indexed goto statement is implemented. The
retlw is a combined load-and-return instruction; it first loads the W register with a literal value and
then exits by executing a return-from-subroutine instruction.

You can use a lookup table to convert binary data into bit patterns that corresponds to
a decimal digit on the seven-segment display. Determine from the PICLab schematic the
mapping of PORTD pins to the display segments and write down the bit patterns that represent
decimal digits 0 through 7 on the seven-segment display.
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@ Append the following code to the above program (that is why you needed the explicit return
at the end of it) and convert your keypad data by calling the Convert subroutine at an
appropriate time in your program. Explain the program flow of this code. What is the
purpose of the andlw instruction?

Convert andlw 7 D e e e e e e e e e
addwf PCL,F S e e e e
retlw %00111111 ; seven-segment bit pattern for digit "O"
retlw e S
retlw YA S
retlw e D e e e e e e e e e
retlw Y/ O
retlw A N
retlw Y/ O
retlw e S

Each seven-segment display consists of eight LEDs connected together at the cathode (-). The
PORTD pins connect to the individual LED anodes (+). With the common cathode pins of each
display connected to ground, it would require 32 bits to control the four displays of the PICLab
board.

A more efficient use of resources employs the technique of time multiplexing to generate an output
on the four displays. Here, the digits are displayed sequentially with only one of the four digits
enabled at anytime. If the switching between digits is sufficiently rapid, the persistence of the
human eye creates the illusion that all the digits are on at the same time.

Four output pins (PORTB pins 0-3) control the voltage at the display cathodes via current-driving
transistors. The corresponding anodes of the four displays are connected in parallel (refer to the
PICLab schematic, Fig. 5.1). A software loop then enables each of the displays in turn while the
bit pattern corresponding to that digit is presented on the PORTD pins. With multiplexing, the pin
count has been reduced to 12 from 32, a saving of 20 input/output pins.

@ Develop a flowchart to multiplex four different digits of data on the PICLab display. Convert
the flowchart to PIC instructions and test your code.

@ Vary the loop timing to determine the minimum refresh rate necessary to prevent the display
from flickering.

5.3 Macros and subroutines

A Macro is a group of instructions that are referred to as a single new instruction. During assembly,
every time a Macro instruction is encountered, the original group of instructions is assembled into
the program.

A subroutine consists of a group of instructions within the user program that begin with a subroutine
name tt label and end with a return statement. A call label instruction branches the program
to label and executes the subroutine code until the return instruction restores the program flow
to the instruction following the call.
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The following code incorporates some practical programming techniques to implement a display
multiplexing scheme. A macro definition is shown as well as an efficient method of implementing a
jump table to select one of several branch possibilities.

@ Analyse and document the code; explain clearly the functionality of the subroutines, then
compare the functionality of this program with your version. You may want to save your code
into a file (say, Show4.asm) before you build and run it. Be sure to add some of your own

code to provide meaningful values to 7seg 0 ... 7seg_3, then run the program.

H Show4.asm: multiplex the four-digit seven-segment display ........

7seg_0 equ 0x20 ; least significant display digit .......

Tseg_1 equ 0x21

Tseg_2 equ 0x22

Tseg_3 equ 0x23 ; most significant display digit ........

Tseg_ptr equ 0x24 ; pointer to current digit displayed.....

Move macro src,dst ; register to register move, modifies W
movf src,W ; the macro defines a new Move
movwf dst ; instruction that is not available
endm ; as part of the PIC instruction set

; your code goes here, with a call to Scan7seg
return

Scan7seg S
incf Tseg_ptr,F R
movlw 3 D e e e e ettt e e e e e
andwf Tseg_ptr,F I
movlw 0x£f0 D e e e ettt et e e e e e e
andwf PORTB,F S e e
call Show7seg D e e e
iorwf PORTB, F e
return N

Show7seg D e e
movf Tseg_ptr,W i
addwf PCL,F D e et e e e e
goto ShowO S
goto Showl I
goto Show2 S
goto Show3 I

ShowO Move Tseg_O,PORTD ; ..o it
retlw %00000001 ; bit 0 selects display O, active high ..

Showl Move Tseg_1,PORTD ; ..o it
retlw %00000010 e

Show2 Move Tseg_2,PORTD ; ... e e



retlw 400000100 D et e
Show3 Move Tseg_3,PORTD ; ... et
retlw 400001000 e

The bits of a port are generally assigned various functions so you must take care to modify only the
pertinent bits when using byte size instructions. This masking process requires reading the current
port value, modifying only specific bits, then writing back the data to the port. Bit manipulation
instructions are not useful when the bit to be modified varies, as in the selection of the digit to be
displayed.

5.4 Interrupts

You will note that depending on the code that you added, the above program will initialize the digit
values and display them indefinitely, or you will have implemented a loop that modifies the digit
variables and calls the Scan7seg subroutine. In the first case, the PIC is fully occupied scanning
the display and can perform no other function; in the second case the refresh rate is determined by
repeated calls to a subroutine.

The ideal way to execute a periodic sequence of events is to use an interrupt. A hardware timer on
the PIC interrupts the program flow every Hms and executes a call to a user interrupt service routine
(ISR). The ISR code runs in the background independently of the user program. You can, with
an ISR, update the display variables or wait for input while the Scan7seg ISR scans the display
at a constant rate. Note that the execution time of the ISR must be less than the time between
interrupts or your program will hang. With this in mind, your ISR is disabled when the PIC is
reset.

To define an interrupt service subroutine that will be remembered by the PIC until redefined, add
the #UserISRon directive following your ISR subroutine code:

#UserISRon Scan7seg ;set Scan7seg as user ISR and enable interrupt

The ISR routine will only execute while your program is running. To test some ISR code, you
can program a one-line instruction (e.g. here  goto here) to execute an infinite loop; the ISR
routine will execute until the PICLab board is reset. The user ISR routine can be turned on and
off from within your program with the following instructions:

bctf Flags,USERISR ;reset user ISR flag, disable user ISR
bsf Flags,USERISR ;set user ISR flag, enable user ISR

5.5 Analog-to-digital conversion

The PIC can sample one of eight input channels with a 10-bit resolution. To perform an analog-to-
digital conversion (ADC), an input channel is selected. A delay follows, to allow the input voltage
to be sampled. A start of conversion flag is set to begin the ADC and another flag is set when the
conversion is completed. The data is then ready to be used.

The ReadAD subroutine performs all of the above tasks. Load the W register with the number of the
input channel and call the routine. After 50us, the lower eight bits of data are returned in the WL
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file register and the two most significant bits are in WH. The Getkey routine reads A/D channel 0
and uses the three most significant bits of the converted value to determine which key was pressed.

@ picl has predefined pointers to the 7-segment LED displays called Digit0. .Digit3, a subrou-
tine equivalent to Scan7seg called Refresh and a routine LedTable, similar to your Convert
routine, that converts a value 0-0x0OF contained in W to the 7-segment pattern for the corre-
sponding hex digit. For convenience and to make your code more compact, use these as part
of your programs.

The following code reads a 10-bit value from the A/D converter channel connected to the
keypad and displays it as three hexadecimal digits on the LED display. Complete the missing
code and verify that the program functions as expected:

#UserISRon Refresh ;define LED display scanning routine as user ISR
bsf Flags,USERISR ;enable execution of user interrupt routine
begin  ..... ..., ;select the keypad channel

.......... ;read 10-bit A/D value, store in WH:WL
.......... ;place lower 8 bits of 10-bit A/D value in W
.......... ;set bits 4-7 to zero, bits 0-3 are A/D bits 0-3

call LedTable ;convert value in W to 7-segment hex digit
movwf DigitO0 ;display hex digit for A/D bits 0-3
swapf WL,W ;place swapped nibbles (hex digits) from WL into W

.......... ;set bits 4-7 to zero, bits 0-3 are A/D bits 4-7
.......... ;convert value in W to 7-segment hex digit
.......... ;display hex digit for A/D bits 4-7
.......... ;place upper 2 bits of 10-bit A/D value in W
.......... ;convert value in W to 7-segment hex digit
.......... ;display hex digit for A/D bits 8-9
.......... ;loop code

5.6 Utility subroutines and data output

There are several pre-loaded subroutines available for use as part of your programs. Click on the
help menu ’?’, and browse the 'Routines’ subdirectories. You should become familiar with these
routines; they are bug-free and will make your programming task much easier.

Several of these routines make the output and conversion of data a simple matter. For example, the
Bin2BCD routine takes the 16-bit binary value stored in the file registers WH and WL and converts it
to a five-digit signed or unsigned decimal value stored in registers DecO-Dec4. The BCD2LED routine
converts and outputs this result to the 7-segment display. Alternately, the contents of DecO-Dec4
can be sent to the 'PICLab output’ window in picl as an ASCII ? string by calling the BCD2TCL
routine, or to the LCD display by calling the BCD2LCD routine. The PICLab LCD display uses the
ASCII character set. These routines require parameters to be set prior to execution.

3ASCII refers to the American Standard Code for Information Interchange, where an 8-bit value is used to
represent the character set of alphanumeric characters a-z, A-Z, 0-9 as well as other symbols typically found on a
keyboard, such as 7, +, I. Coded in the range of ASCII=0-0x1F, are non-printed control characters.
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To send to picl a single ASCII character stored in W, use the TxByte routine. To send a value
in W in the range of 0-9 as the corresponding ASCII decimal character, use the TxDigit routine.
The Hex2TCL routine outputs the value in W as a 2-character hexadecimal string, while the Dec2TCL
routine outputs the value in W in the valid range of 0-99 as a 2-character decimal string.

The characters sent to picl are stored in a buffer until a newline character ASCII=0x0A, is received.
This is handy when several columns of data need to be sent; they will be displayed on the same
line until terminated by a newline character. To separate your data values with a space, send the
‘space’ character, ASCII=0x20.

The following code segment outputs the value in WH:WL as a decimal string to the PICLab output
window:

call Bin2BCD ;convert 16-bit value in WH:WL to decimal string
movlw 6 ;set field width for BCD2TCL to 6 characters

call BCD2TCL ;send string to TCL buffer

movlw ’\n ;load W register with ASCII newline character
call TxByte ;send character, flush buffer to display contents

For the following exercises, begin by sketching a flowchart of the logical steps required to perform
the given task, then convert each step to one or more PIC instructions that will define your program.
Be sure to thoroughly document your code. Test your code initially on the PIC simulator, then
execute your program on PICLab:

1. write a program that reads the keypad channel and displays the result as a decimal value 0-
1023 on the 7-segment LED display. The value should change as the various keypad switches
are pressed;

2. write a program that outputs three pairs of coordinate points (1,2), (2,4), (3,8) to the PICLab
output window. The data should appear as an array of three rows by two columns. Click the
button to generate a Gnuplot graph of your data. Check the Lines box to interpolate
the data with line segments;

3. write programs that implement in software the summing and shift/add algorithms used to
multiply two 4-bit numbers that were implemented in hardware as part of Experiment 6.
Begin by reviewing the arithmetic instructions available to the PIC and their effect on the
carry C and zero Z flags contained in the STATUS register.
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Experiment 6

Building and using a digital thermometer

Some things happen so fast that one simply cannot monitor them without help from a
fast computer in the role of a data taker. One example is a rapid quench which occurs
when a hot body is immersed into a cold fluid. Is the rate of cooling still proportional to
the temperature difference?

@ Assemble the thermistor circuit as shown in Fig.6.1.
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Figure 6.1: Thermistor circuit.
R, Ry ~ 10k2; Ry = 10k) potentiometer; [?; = thermistor, I, decreases as temperature increases

@ Immerse thermistor and mercury thermometer into a beaker of ice-water at t = 0°C. Adjust
Ry so that V = 9.5V at 0°C.

Calibrate V' as a function of . Slowly heat the water — so as to maintain thermal quasi-
equilibrium — and measure V and t at ~ 5 s intervals. Heat to ~ 60°C. Use little water for
speed. Use the program you have written to measure V'; record temperature readings from
the mercury thermometer by hand.

@ Plot and analyze your data and create the temperature calibration plot of the thermistor
circuit.
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@ Optional: modify your program to report true temperature in °C.

@ Prepare two beakers, one with ice-water, one at a moderately high temperature. Immerse the
thermistor/mercury thermometer assembly into the hot one. Modify your program to perform
a frame grab of a large number of points. Start the program and rapidly transfer the assembly
into the ice-water beaker. Use your calibration data to plot true temperature as a function of
time and analyze your data, attempting to verify Newton’s law of cooling (the rate of cooling
is proportional to the temperature difference). Note and comment on the deviations from the
exponential behaviour.
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Appendix A

Resistor colour code

Ist  Znd J4rd 4th

BANDS
‘ Colour ‘ First Band ‘ Second Band ‘ Third Band ‘ Fourth Band ‘

Black 0 0 10° -
Brown 1 1 10! -

Red 2 2 102 -
Orange 3 3 10° -
Yellow 4 4 10? -
Green 5 5 10° -

Blue 6 6 10° -
Violet 7 7 107 -

Gray 8 8 108 -
White 9 9 10? -

Gold - - 101 5% tolerance
Silver - 1072 10% tolerance

No band - - - 20% tolerance

For example, the resistance of a resistor whose bands are red, red, red, silver is

22 x 102 — 2.2k £+ 10%
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