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Introduction Indirectly observed data

Framework: indirectly observed data

Inverting the Fredholm Integral Equation of the 1st kind (FEI):

S(ω) =

∫
g(x)K(ω, x) dx (1)

S(ω) — what you measure experimentally (e.g. an NMR spectrum)

g(x) — what you want to know (e.g. chemical shifts)

K(ω, x) — a kernel function

is, in general, an ill-posed problem. Only a few choice kernels allow a complete inverse
calculation: S(ω) −→ g(x), e.g. a Fourier transform.

Most other kernels require numerical solutions.
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Introduction A new research paradigm

A new research paradigm

An unexpected benefit: a “new research paradigm”1, where data analysis is an essential part
of the experiment itself. The “model” of the traditional paradigm, where it is kept
scrupulously separate from the experiment, becomes a part of it, subject to computer-based
tweaking and straining.
This yields estimates of the parameters, quantitative analysis of the misfit of the model to the
experimental data, and, ultimately, better models.

1J.V.Beck, Perspective on the Relation of Current Engineering Practice to Inverse Problems, Michigan State
University, 1998. http://www.me.ua.edu/research/inverse-problems/perspective.html.

Edward Sternin Inverse Theory Methods PHYS 5P10: 2018-02-26 4 / 29

http://www.me.ua.edu/research/inverse-problems/perspective.html


Introduction A new research paradigm

A new research paradigm

The language of this new paradigm is the language of the inverse problems, and its range of
applicability is vast:

medical, industrial, and geophysical imaging, using X-ray or magnetic resonance or
electrical impedance measurements;

analysis of EEG traces in neuroscience and experimental psychology;

inverse heat problems in the casting of steel;

scattering problems in physics and geological exploration;

extraction of material properties from indirect bulk measurements.
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Ill-posed problems Definitions: ill-posed, misfit, pseudo-inverse

Ill-posedness and what to do with it

Existence: a solution g(x) may not exist at all

Then: ask not for the “true” g(x), but for “a reasonable approximation g̃(x)”.
Here, “reasonable” is in the least-squares sense, a minimum of misfit

Ψ =

∥∥∥∥S(ω)−
∫
g̃(x)K(ω, x)dx

∥∥∥∥2
This misfit norm, the “distance” between the measured S(ω) and the
approximation calculated as an integral over g̃(x), is sometimes called the
least-squares error norm. A minimum of misfit ensures compatibility of the fit
with the measured data.
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Ill-posed problems Uniqueness

Ill-posedness and what to do with it

Uniqueness: many g(x) may satisfy Eq.1 equally well

Then: bring in additional physical input. Of all compatible solutions, choose
those that satisfy those additional constraints. E.g. a reasonable physical
function is “smooth”, so minimize ‖g′′(x)‖2.
Each problem is unique and may need a different optimum constraint. Test using
numerical modeling (e.g. Monte Carlo).
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Ill-posed problems Stability

Ill-posedness and what to do with it

Stability: a small perturbation in S(ω) (e.g. experimental noise) may cause a
large jump in g(x)

Then: regularize the problem, enforcing local stability of the inverse
S(ω) −→ g(x) mapping

Formally, lack of stability means that two “adjacent” forward mappings S1, S2 do not have
“adjacent” origins g1, g2, i.e. that one cannot find two numbers η and ε(η) so that from
‖g2 − g1‖ ≤ η follows ‖S2 − S1‖ ≤ ε(η), independently of the choice of g1 and g2. Lack of
stability is a distinguishing feature of all ill-posed inverse problems.
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Ill-posed problems Stability

Regularization

Discretization: just choosing the right set of {xi} for which to ask about g(xi)
may do the trick.
Often done implicitly, but there are mathematical implications.
cf. Nyquist limit, noise folding, and zero filling in FT NMR

Truncation of SVD: expand the transformation matrix in its “singular values”,
and then truncate the expansion, ignoring the lower values which are responsible
for most instabilities.
cf. Taylor series expansion of functions
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Regularization Tikhonov regularization

Regularization

Tikhonov regularization: bring in additional constraints, i.e. minimize

Ψ{g(x)} =

∥∥∥∥S(ω)−
∫
g(x)K(ω, x)dx

∥∥∥∥2 + λT {g(x)}

T {g(x)} =


‖g‖2 (Tikhonov)
‖g′′‖2 (Phillips)

−
∫
g log g dx (Shannon, maximum entropy)

where λ controls the balance between compatibility with the data, and the
regularizing effects of T{g}
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Regularization A discrete formulation of the FIE problem

Regularization by discretization

In the ω-direction, a natural discretization of a FIE occurs when a discrete set of data
sampling points ωi is considered. Discretization in the x-direction is realized when, for
example, g is approximated with a sum of δ-functions,

∑
i gi δ(x− xi), on a pre-selected grid

{xi} with the unknown coefficients gi, or when g(x) is assumed to be a linear function within
each of the pre-selected intervals [gi, gi+1]. This is often done implicitly in the “standard”
analysis of the experimental data, but strictly speaking, such discretizations impose strong
restrictions on a possible solution g. This alone may sufficiently stabilize the inverse problem
to overcome its ill-posedness.
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Regularization A discrete formulation of the FIE problem

A discrete formulation of the FIE problem

inverse

←−
K · g = S

|
j
↓

— i −→ ·
|
i
↓

=
|
j
↓

Ranges of i, j define the problem as even-, over-, or under-determined.
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Regularization A discrete formulation of the FIE problem

Underdetermined ?!

For an experimentalist, it is somewhat startling to think of a fit to more “parameters” than
there are “measured data points”, but this simply underscores the fact that regularized
solutions of inverse problems are fundamentally different from least-squares fits.
The discrete inverse problem is equivalent to calculating the inverse matrix, K−1 such that
g = K−1f . If such an inverse does not exist (a majority of cases), the problem becomes the
calculation of the pseudo-inverse.
The right kind of numerical strategy is important, and much depends on the experience and
judgment of the person performing the calculation: “successful inverse problem solving is
strongly dependent on the analyst”2

2J. C. Santamarina and D. Fratta. Discrete signals and inverse problems. An introduction for engineers and
scientists. John Wiley & Sons, 2005.

Edward Sternin Inverse Theory Methods PHYS 5P10: 2018-02-26 13 / 29



Regularization Example: a distribution of exponential relaxation rates

Example: multi-exponential decay

f(t) =

∫ rmax

rmin

g(r)e−rt dr

where t represents time and r has the physical meaning of a relaxation rate. The data f(t) is
a decay curve in the linearly-sampled time domain, and the desired inverse solution g(r) is a
distribution of relaxation rates.
Our example: a broad asymmetric distribution of relaxation rates simulated in the
logarithmically-sampled range of rmin = 10−3 to rmax = 100, with random
normally-distributed noise added at 1% of the maximum f(t) intensity.
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Regularization Example: a distribution of exponential relaxation rates

Example: multi-exponential decay

Two simulated relaxation-rate distribution
functions, ga(r) and gb(r) (smooth lines in the
insert), are used to generate two time-domain
signals, each with 1% random noise is added.
The resulting fa(t) and fb(t) are very similar.
For now, ignore the points in the insert.
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Regularization Discretization

Discretization strategy

Select enough points in the grid of parameter values to allow for the entire physically
relevant range to be covered with sufficient resolution to reproduce all of the essential
features in the data; and no more.

Acquire enough data points, sufficiently spread out in the observation domain to resolve
contributions from different parameter values.

Over-determined problems, by at least a factor of 2, are easier to solve.

Higher parameter grid densities require better signal-to-noise ratio in the data.

Use numerical simulation and testing (trial-and-error) to establish a good discretization
scheme for a given problem. Near the optimum, the results of the calculation should be largely
independent of the exact choice of the discretization grids.
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Regularization Discretization

Discretization example

Regularizing effects of discretization for a
distribution of relaxation rates. Level of
discretization is varied by changing the total
number of points across the parameter space.
At just the right level of regularization (middle
plot), the re-calculated g̃ is a faithful
representation of the true g.
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Regularization SVD truncation

SVD truncation strategy

Many discrete ill-posed problems exhibit a gradual decrease in the size of their singular
values.

As the kernel matrix is expanded in its singular values, the lower-valued ones tend to
magnify the effects of noise in the measured data.

Regularize by truncating the SVD expansion!

This has to be done in the region free of rapid changes in the size of the singular values.
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Regularization SVD truncation

SVD truncation example

Overly smooth pseudo-inverse solution (top)
fails to reproduce some of the features of the
true g, and insufficient regularization produces
an unstable pseudo-inverse (bottom). The
optimum SVD truncation (middle) faithfully
reproduces the true g.
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Regularization Tikhonov regularization

Tikhonov regularization

Applying Tikhonov regularization to a noisy experimental dataset

Ψ{g} =

∥∥∥∥f(t)−
∫
g(r)K(r, t)dr

∥∥∥∥2 + λ ‖g(r)‖2

crucially depends on the right choice for λ: if λ value is too small, a stable solution will not be
found; if λ is too large, essential physical features in the solution will be obscured.

This form of the regularization term gives preference to “small” g(x): in the discrete case,
those with as few as possible non-zero values in {gi}.
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Regularization Tikhonov regularization

Tikhonov regularization

Overly “small” pseudo-inverse solution (top)
fails to reproduce some of the features of the
true g, and insufficient regularization produces
an unstable pseudo-inverse (bottom). The
optimum choice of λ (middle) faithfully
reproduces the true g.
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Regularization The L-curve

Optimum regularization: the L-curve

L-curve is a plot of the norm of the
regularized solution ‖g̃‖ versus the
corresponding misfit norm ‖f −Kg̃‖,
as the regularization is varied. Upper
left: loss of stability in g̃; lower right:
loss of compatibility with the data;
the corner corresponds to the
optimum regularization.
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Regularization The L-curve

Optimum regularization: the L-curve

L-curve used in selecting optimum
grid density in r

L-curve used in selecting optimum
SVD truncation
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Regularization The L-curve

Example: multi-exponential decay

Two simulated relaxation-rate distribution
functions, ga(r) and gb(r) are successfully
recovered from the two, essentially
indistinguishable, simulated noisy datasets
fa(t) and fb(t).

This time, do focus on the points in the insert!

The results of the inversion using Tikhonov
regularization, of fa(t) and fb(t), reproduce the
true exponential rate distributions faithfully.
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SciLab code example

Skeleton code

function [g] = regularize(t,f,r,K,svd_n,lambda)

m=length(f); n=length(r);

if m < n then

error("For overdetermined problems only, need more data");

end;

[U,S,V]=svd(K); // SVD of the kernel matrix

nt=n;

if svd_cnt > 0 then // if requested, truncate singular values

nt=max(min(n,svd_cnt),2); // less than n, but not too few!

end;

sl=S(nt,nt); // Tikhonov regularization

for k=1:nt

sl(k,k)=S(k,k)/(S(k,k)^2+lambda);

end;

g=V(1:n,1:nt)*sl*U(1:m,1:nt)’*f; // return g(r)

endfunction;
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SciLab code example

Skeleton code, cont’d

///////////////////////////////////////////////////////////

// multi-exponential inverse analysis of time decay curves

// f(t) = \int g(r) exp(-r*t) dr

///////////////////////////////////////////////////////////

// r = vector or r values

// n = number of points in r

// g = vector of unknowns, g(r)

// t = vector of t values

// m = number of points in t

// f = vector of measured data, f(t)

// K = (m x n) kernel matrix

// svd_cnt = keep only this many singular values

// lambda = Tikhonov regularization parameter

// datafile = (noisy) data, in two columns: (t,f)

///////////////////////////////////////////////////////////
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SciLab code example

Skeleton code, cont’d

datafile=’test.dat’;

r_steps=30; // r-grid has this many points,

r_min=1e-3; // from this minimum,

r_max=1e0; // to this maximum

svd_cnt=11; // set to 0 for no SVD truncation‘

lambda=2e-4; // set to 0 for no Tikhonov regularization

// read in the time-domain data

fd=mopen(datafile); [n,t,f]=mfscanf(-1,fd,"%f %f"); mclose(fd);

// create a vector of r values, logarithmically spaced

r_inc = (log(r_max)-log(r_min)) / (r_steps-1);

r = exp([log(r_min):r_inc:log(r_max)]);

// set up our kernel matrix, normalize by the step in r

K = exp(-t*r) * r_inc;
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SciLab code example

Skeleton code, cont’d

// call the inversion routine

[g] = regularize(t,f,r,K,svd_cnt,lambda);

// plot the original data f(t) and our misfit

scf(1); clf; plot(t,f,’-’);

misfit = f - K*g ;

Psi = sum(misfit.^2)/(length(f)-1);

scale=0.2*max(f)/max(misfit);

plot(t,scale*misfit,’-r’);

legend(’input data, f(t)’,’misfit, x’+string(scale));

xtitle(’LS error norm = ’+string(Psi),’t’,’f(t)’);

// separately, plot the result of the inversion

scf(2); clf; plot(log10(r),g,’:o’);

xtitle(’inverse solution’,’log r’,’g(r)’);
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Homework

Homework

Review the concept of SVD decomposition.

Analyze the skeleton code of regularize(); make sure you understand every line.

Modify the main code by adding appropriate loops, etc. to reproduce the results
presented for the exponential example, including the L-curves, on the sample data
provided in /work/5P10/test.dat

Automate the optimum selection of parameter λ. One possible approach is to seek the
value that corresponds to the shortest distance to the origin on the L-curve. Be efficient:
vary the step size in λ depending on how strong the dependence on λ is.

Optionally, use your program to analyze a real experimental data set (to be provided).
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