Heat and temperature

Heat is a form of energy.

Temperature is a measure of internal motion of atoms and molecules.

Zeroth Law of Thermodynamics: if $$A {\stackrel{\mbox{eq-m}}{\longleftrightarrow}} B \quad \mbox{ and } \quad B {\stackrel{\mbox{eq-m}}{\longleftrightarrow}} C$$ then $$A {\stackrel{\mbox{eq-m}}{\longleftrightarrow}} C$$

Temperature scales: Celsius (\(T_C\)), Fahrenheit (\(T_F\)), Kelvin (absolute, \(T\))

$$ \begin{eqnarray*} T_F & = & \frac{9}{5} \frac{^\circ \mbox{F}}{^\circ \mbox{C}} T_C + 32^\circ \mbox{F} \\ T_C & = & \frac{5}{9} \frac{^\circ \mbox{C}}{^\circ \mbox{F}} ( T_F - 32^\circ \mbox{F}) \\ T & = & T_C + 273.15 \end{eqnarray*} $$

Thermal expansion:

$$ \begin{eqnarray*} \mbox{length (1D):} & & \Delta L = \alpha L_0 \Delta T\\ \mbox{area (2D):} & & \Delta A = 2 \alpha A_0 \Delta T\\ \mbox{volume (3D):} & & \Delta V = 3 \alpha V_0 \Delta T = \beta V_0 \Delta T \end{eqnarray*} $$

Heat capacity: $$ C=\frac{Q}{\Delta T} , \quad [C] =\frac{\mbox{J}}{\mbox{K}} $$

Specific heat: $$ c=\frac{Q}{m \Delta T} , \quad [c] = \frac{\mbox{J}}{\mbox{kg} \cdot \mbox{K}} $$
For example, \(c_{\mbox{water}} = 4186 \frac{\mbox{J}}{\mbox{kg}\cdot\mbox{K}} = 1 \frac{\mbox{kcal}}{\mbox{kg}\cdot\mbox{K}}\), where 1 cal = 4.186 J

Latent heat: \(Q = m L_f\) for fusion (melting) or \(Q = m L_v\) for vaporization

Heat conduction: $$ \frac{\displaystyle \Delta Q}{\displaystyle \Delta t} = k_B A \frac{\displaystyle \Delta T}{\displaystyle L} $$

Radiation: $$ \frac{\displaystyle \Delta Q}{\displaystyle \Delta t} = e \sigma A \left(T^4 - T_{\rm surround}^4\right) $$ with Stefan-Boltzmann constant $$\sigma=5.67\times 10^{-8} \frac{\mbox{W}}{\mbox{m}^2\mbox{K}^4}$$