Waves in elastic media

Longitudinal waves: displacement of the medium $||$ direction of wave propagation; transverse waves: $\perp$

Velocity $v$, period $T$, wavelength $\lambda$ of the wave

$$ v = {\lambda\over T} = \lambda f $$

Velocity of transverse waves on a string

$$ v = \sqrt{\frac{F}{m/l}} \qquad \mbox{, where }\frac{m}{l} = \mbox{ linear density} $$

Velocity of longitudinal sound waves in

$$ \begin{eqnarray*} \mbox{long solid bars} & & v=\sqrt{\frac{\cal Y}{\rho}} \qquad \mbox{, where } {\cal Y} = \mbox{ Young's modulus}\\ \mbox{liquids} & & v=\sqrt{\frac{\cal B}{\rho}} \qquad \mbox{, where } {\cal B} = \mbox{ bulk modulus}\\ \mbox{ideal gases} & & v=\sqrt{\frac{\gamma k T}{m}} \qquad \mbox{, where } \gamma=\frac{C_p}{C_v} \mbox{ , } T = \mbox{ temperature} \end{eqnarray*} $$

In general, $v_{\mbox{\small solids}} > v_{\mbox{\small liquids}} > v_{\mbox{\small gases}}$

Longitudinal and transverse waves may have different velocities in the same medium